Suppr超能文献

扭曲双层石墨烯中的晶格重构。

Lattice reconstruction in twisted bilayer graphene.

作者信息

Fu Zhongqiu, Zhou Xiaofeng, He Lin

机构信息

Experiment Teaching Platform, Beijing Normal University, Zhuhai 519087, People's Republic of China.

Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China.

出版信息

J Phys Condens Matter. 2024 Dec 6;37(7). doi: 10.1088/1361-648X/ad987d.

Abstract

Twisted bilayer graphene (TBG) provides a tunable platform to study emergent properties that are absent in single-layer graphene by the van der Waals (vdW) interlayer interaction. The vdW interlayer interaction can also lead to notable lattice reconstruction at the interface, promoting interlayer commensurability while minimizing intralayer lattice distortion. The lattice reconstruction in TBG is a pivotal phenomenon that significantly influences the optical and electronic properties. Currently, the study of lattice reconstruction in TBG attracts much attention in condensed matter physics. In this article, we review the experimental advances in the field of TBG lattice reconstruction. The formation and atomic-scale characterization within reconstructed TBG are overviewed comprehensively. In addition, lattice reconstruction-induced electronic modulations are introduced. Moreover, coexistence and transition between reconstructed and unreconstructed phases within a critical transition regime are described. Furthermore, we discuss the prospects of tunable reconstruction within TBG and other 2D material heterostructures.

摘要

扭曲双层石墨烯(TBG)提供了一个可调谐平台,用于研究单层石墨烯中因范德华(vdW)层间相互作用而不存在的新兴特性。vdW层间相互作用还会导致界面处显著的晶格重构,促进层间可公度性,同时将层内晶格畸变降至最低。TBG中的晶格重构是一个关键现象,对光学和电子特性有显著影响。目前,TBG中晶格重构的研究在凝聚态物理领域备受关注。在本文中,我们回顾了TBG晶格重构领域的实验进展。全面概述了重构TBG中的形成和原子尺度表征。此外,还介绍了晶格重构引起的电子调制。此外,还描述了在临界转变区域内重构相和未重构相之间的共存和转变。此外,我们还讨论了TBG和其他二维材料异质结构中可调谐重构的前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验