Suppr超能文献

用于零膨胀数据的异质治疗效果的贝叶斯非参数模型

Bayesian Nonparametric Model for Heterogeneous Treatment Effects With Zero-Inflated Data.

作者信息

Kim Chanmin, Li Yisheng, Xu Ting, Liao Zhongxing

机构信息

Department of Statistics, SungKyunKwan University, Seoul, South Korea.

Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Texas.

出版信息

Stat Med. 2024 Dec 30;43(30):5968-5982. doi: 10.1002/sim.10266. Epub 2024 Nov 28.

Abstract

One goal of precision medicine is to develop effective treatments for patients by tailoring to their individual demographic, clinical, and/or genetic characteristics. To achieve this goal, statistical models must be developed that can identify and evaluate potentially heterogeneous treatment effects in a robust manner. The oft-cited existing methods for assessing treatment effect heterogeneity are based upon parametric models with interactions or conditioning on covariate values, the performance of which is sensitive to the omission of important covariates and/or the choice of their values. We propose a new Bayesian nonparametric (BNP) method for estimating heterogeneous causal effects in studies with zero-inflated outcome data, which arise commonly in health-related studies. We employ the enriched Dirichlet process (EDP) mixture in our BNP approach, establishing a connection between an outcome DP mixture and a covariate DP mixture. This enables us to estimate posterior distributions concurrently, facilitating flexible inference regarding individual causal effects. We show in a set of simulation studies that the proposed method outperforms two other BNP methods in terms of bias and mean squared error (MSE) of the conditional average treatment effect estimates. In particular, the proposed model has the advantage of appropriately reflecting uncertainty in regions where the overlap condition is violated compared to other competing models. We apply the proposed method to a study of the relationship between heart radiation dose parameters and the blood level of high-sensitivity cardiac troponin T (hs-cTnT) to examine if the effect of a high mean heart radiation dose on hs-cTnT varies by baseline characteristics.

摘要

精准医学的一个目标是通过根据患者的个体人口统计学、临床和/或基因特征量身定制治疗方案,从而为患者开发有效的治疗方法。为实现这一目标,必须开发出能够以稳健方式识别和评估潜在异质性治疗效果的统计模型。现有的常用于评估治疗效果异质性的方法基于带有交互项或根据协变量值进行条件设定的参数模型,其性能对重要协变量的遗漏和/或其值的选择很敏感。我们提出了一种新的贝叶斯非参数(BNP)方法,用于在零膨胀结果数据的研究中估计异质性因果效应,这种数据在健康相关研究中很常见。我们在BNP方法中采用了富集狄利克雷过程(EDP)混合模型,在结果狄利克雷过程混合模型和协变量狄利克雷过程混合模型之间建立了联系。这使我们能够同时估计后验分布,便于对个体因果效应进行灵活推断。我们在一组模拟研究中表明,所提出的方法在条件平均治疗效果估计的偏差和均方误差(MSE)方面优于其他两种BNP方法。特别是,与其他竞争模型相比,所提出的模型具有能够适当反映重叠条件被违反区域的不确定性的优势。我们将所提出的方法应用于一项关于心脏辐射剂量参数与高敏心肌肌钙蛋白T(hs-cTnT)血液水平之间关系的研究,以检验高平均心脏辐射剂量对hs-cTnT的影响是否因基线特征而异。

相似文献

本文引用的文献

7
Mediation analysis for count and zero-inflated count data.中介分析用于计数和零膨胀计数数据。
Stat Methods Med Res. 2018 Sep;27(9):2756-2774. doi: 10.1177/0962280216686131. Epub 2017 Jan 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验