Department of Statistics, University of Florida, Gainesville, Florida, USA.
Biometrics. 2023 Dec;79(4):3140-3152. doi: 10.1111/biom.13837. Epub 2023 Feb 15.
We propose a doubly robust approach to characterizing treatment effect heterogeneity in observational studies. We develop a frequentist inferential procedure that utilizes posterior distributions for both the propensity score and outcome regression models to provide valid inference on the conditional average treatment effect even when high-dimensional or nonparametric models are used. We show that our approach leads to conservative inference in finite samples or under model misspecification and provides a consistent variance estimator when both models are correctly specified. In simulations, we illustrate the utility of these results in difficult settings such as high-dimensional covariate spaces or highly flexible models for the propensity score and outcome regression. Lastly, we analyze environmental exposure data from NHANES to identify how the effects of these exposures vary by subject-level characteristics.
我们提出了一种双重稳健的方法来描述观察性研究中治疗效果的异质性。我们开发了一种频率派推断程序,该程序利用倾向评分和结果回归模型的后验分布,即使使用高维或非参数模型,也可以对条件平均治疗效果进行有效的推断。我们表明,当两个模型都正确指定时,我们的方法在有限样本或模型误设定下会导致保守推断,并提供一致的方差估计。在模拟中,我们说明了在困难的环境中,如高维协变量空间或倾向评分和结果回归的高度灵活模型,这些结果的实用性。最后,我们分析了 NHANES 的环境暴露数据,以确定这些暴露的影响如何因个体水平的特征而变化。