Suppr超能文献

人工智能算法在通过放射影像预测牙种植体预后方面的进展:一项系统综述。

Advancements of artificial intelligence algorithms in predicting dental implant prognosis from radiographic images: A systematic review.

作者信息

Alqutaibi Ahmed Yaseen, Algabri Radhwan S, Alamri Abdulrahman S, Alhazmi Lujain S, Almadani Slwan M, Alturkistani Abdulrahman M, Almutairi Abdulaziz G

机构信息

Associate Professor, Substitutive Dental Sciences Department (Prosthodontics), College of Dentistry, Taibah University, Al Madinah, Saudi Arabia; and Associate Professor, Department of Prosthodontics, College of Dentistry, Ibb University, Ibb, Yemen.

Assistant Professor, Department of Prosthodontics, College of Dentistry, Ibb University, Ibb, Yemen.

出版信息

J Prosthet Dent. 2024 Nov 27. doi: 10.1016/j.prosdent.2024.10.036.

Abstract

STATEMENT OF PROBLEM

The ability of artificial intelligence (AI) to accurately forecast the prognosis of dental implants from radiographic images is unclear.

PURPOSE

The purpose of this systematic review was to evaluate the efficacy of AI algorithms in predicting implant outcomes by focusing on key factors like peri-implantitis, implant stability, marginal bone levels, dental implant failure, implant success, and osseointegration.

MATERIAL AND METHODS

This systematic review adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses of Diagnostic Test Accuracy (PRISMA-DTA) guidelines. The included studies focused on the radiographic data of patients with dental implants where AI algorithms were compared with expert judgment. A comprehensive search in 4 databases and a manual search were conducted. The quality and risk of bias were assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool.

RESULTS

Of 424 references, 13 eligible articles were included. These studies used different radiographic types and AI models. AI algorithms showed promising accuracy rates, reaching 99.8%. Sensitivity and specificity ranged from 67% to 95% and 78% to 100%, respectively. The studies indicated that AI models significantly reduce analysis time compared with manual methods.

CONCLUSIONS

AI algorithms demonstrate promising accuracy in predicting dental implant prognosis, enhancing treatment planning, and early intervention. However, variations in AI models and methodologies highlight the need for further research.

摘要

问题陈述

人工智能(AI)从放射影像准确预测牙种植体预后的能力尚不清楚。

目的

本系统评价的目的是通过关注种植体周围炎、种植体稳定性、边缘骨水平、牙种植体失败、种植体成功和骨结合等关键因素,评估AI算法在预测种植体结局方面的有效性。

材料与方法

本系统评价遵循诊断试验准确性的系统评价和Meta分析的首选报告项目(PRISMA-DTA)指南。纳入的研究聚焦于牙种植体患者的放射影像数据,将AI算法与专家判断进行比较。在4个数据库中进行了全面检索并进行了手工检索。使用诊断准确性研究质量评估2(QUADAS-2)工具评估质量和偏倚风险。

结果

在424篇参考文献中,纳入了13篇符合条件的文章。这些研究使用了不同的放射影像类型和AI模型。AI算法显示出有前景的准确率,达到99.8%。敏感性和特异性分别为67%至95%和78%至100%。研究表明,与手工方法相比,AI模型显著缩短了分析时间。

结论

AI算法在预测牙种植体预后、加强治疗计划制定和早期干预方面显示出有前景的准确性。然而,AI模型和方法的差异凸显了进一步研究的必要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验