Suppr超能文献

利用机器学习技术分析四种长非编码 RNA 用于肝细胞癌筛查和预后

Analysis of four long non-coding RNAs for hepatocellular carcinoma screening and prognosis by the aid of machine learning techniques.

机构信息

Department of biochemistry, Faculty of pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt.

Faculty of computer science, October University for Modern Sciences and Arts (MSA), Giza, Egypt.

出版信息

Sci Rep. 2024 Nov 28;14(1):29582. doi: 10.1038/s41598-024-80926-w.

Abstract

Hepatocellular carcinoma (HCC) represents a significant health burden in Egypt, largely attributable to the endemic prevalence of hepatitis B and C viruses. Early identification of HCC remains a challenge due to the lack of widespread screening among at-risk populations. The objective of this study was to assess the utility of machine learning in predicting HCC by analyzing the combined expression of lncRNAs and conventional laboratory biomarkers. Plasma levels of four lncRNAs (LINC00152, LINC00853, UCA1, and GAS5) were quantified in a cohort of 52 HCC patients and 30 age-matched controls. The individual diagnostic performance of each lncRNA was assessed using ROC curve analysis. Subsequently, a machine learning model was constructed using Python's Scikit-learn platform to integrate these lncRNAs with additional clinical laboratory parameters for HCC diagnosis. Individual lncRNAs exhibited moderate diagnostic accuracy, with sensitivity and specificity ranging from 60 to 83% and 53-67%, respectively. In contrast, the machine learning model demonstrated superior performance, achieving 100% sensitivity and 97% specificity. Notably, a higher LINC00152 to GAS5 expression ratio significantly correlated with increased mortality risk. The integration of lncRNA biomarkers with conventional laboratory data within a machine learning framework demonstrates significant potential for developing a precise and cost-effective diagnostic tool for HCC. To enhance the model's robustness and prognostic capabilities, future studies should incorporate larger cohorts and explore a wider array of lncRNAs.

摘要

肝细胞癌(HCC)在埃及是一个重大的健康负担,主要归因于乙型和丙型肝炎病毒的流行。由于高危人群缺乏广泛的筛查,早期发现 HCC 仍然是一个挑战。本研究的目的是通过分析 lncRNA 和常规实验室生物标志物的联合表达来评估机器学习在预测 HCC 中的效用。在 52 名 HCC 患者和 30 名年龄匹配的对照组中定量分析了四种 lncRNA(LINC00152、LINC00853、UCA1 和 GAS5)的血浆水平。使用 ROC 曲线分析评估每个 lncRNA 的个体诊断性能。随后,使用 Python 的 Scikit-learn 平台构建了一个机器学习模型,将这些 lncRNAs 与其他临床实验室参数整合用于 HCC 诊断。单个 lncRNA 表现出中等的诊断准确性,敏感性和特异性范围分别为 60-83%和 53-67%。相比之下,机器学习模型表现出更好的性能,达到 100%的敏感性和 97%的特异性。值得注意的是,较高的 LINC00152 与 GAS5 表达比与死亡率增加显著相关。在机器学习框架中整合 lncRNA 生物标志物与常规实验室数据显示出开发精确且具有成本效益的 HCC 诊断工具的巨大潜力。为了增强模型的稳健性和预后能力,未来的研究应该纳入更大的队列,并探索更广泛的 lncRNA。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18c1/11604705/02a324876491/41598_2024_80926_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验