Department of Informatics, Ionian University, Corfu, Greece.
Adv Exp Med Biol. 2021;1338:21-29. doi: 10.1007/978-3-030-78775-2_4.
Hepatocellular carcinoma (HCC) is a form of primary cancer appearing in the liver. In this work used the hepatocellular carcinoma dataset from the UCI machine learning repository and tested different techniques for feature selection and classification. The following algorithms were used: decision trees, random forests, SVMs, k-NN classifiers, AdaBoost, and gradient boost. The best results were obtained using gradient boost with 84% accuracy and 93% precision. Finally, we deployed the model to a web application as a decision support system for clinicians.
肝细胞癌 (HCC) 是一种出现在肝脏中的原发性癌症。在这项工作中,我们使用了 UCI 机器学习存储库中的肝细胞癌数据集,并测试了不同的特征选择和分类技术。使用了以下算法:决策树、随机森林、SVM、k-NN 分类器、AdaBoost 和梯度提升。使用梯度提升算法获得了最佳结果,准确率为 84%,精度为 93%。最后,我们将模型部署到一个 Web 应用程序中,作为临床医生的决策支持系统。