文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在自然睡眠环境中对无肌张力快速眼动睡眠进行半自动量化。

Semi automatic quantification of REM sleep without atonia in natural sleep environment.

作者信息

Possti Daniel, Oz Shani, Gerston Aaron, Wasserman Danielle, Duncan Iain, Cesari Matteo, Dagay Andrew, Tauman Riva, Mirelman Anat, Hanein Yael

机构信息

X-trodes, Herzelia, Israel.

School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel.

出版信息

NPJ Digit Med. 2024 Nov 28;7(1):341. doi: 10.1038/s41746-024-01354-8.


DOI:10.1038/s41746-024-01354-8
PMID:39609533
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11605064/
Abstract

Polysomnography, the gold standard diagnostic tool in sleep medicine, is performed in an artificial environment. This might alter sleep and may not accurately reflect typical sleep patterns. While macro-structures are sensitive to environmental effects, micro-structures remain more stable. In this study we applied semi-automated algorithms to capture REM sleep without atonia (RSWA) and sleep spindles, comparing lab and home measurements. We analyzed 107 full-night recordings from 55 subjects: 24 healthy adults, 28 Parkinson's disease patients (15 RBD), and three with isolated Rem sleep behavior disorder (RBD). Sessions were manually scored. An automatic algorithm for quantifying RSWA was developed and tested against manual scoring. RSWAi showed a 60% correlation between home and lab. RBD detection achieved 83% sensitivity, 79% specificity, and 81% balanced accuracy. The algorithm accurately quantified RSWA, enabling the detection of RBD patients. These findings could facilitate more accessible sleep testing, and provide a possible alternative for screening RBD.

摘要

多导睡眠图是睡眠医学中的金标准诊断工具,在人工环境中进行。这可能会改变睡眠,并且可能无法准确反映典型的睡眠模式。虽然宏观结构对环境影响敏感,但微观结构则更为稳定。在本研究中,我们应用半自动算法来捕捉无张力快速眼动睡眠(RSWA)和睡眠纺锤波,比较实验室测量和家庭测量。我们分析了来自55名受试者的107份全夜记录:24名健康成年人、28名帕金森病患者(15名有快速眼动睡眠行为障碍)和3名患有孤立性快速眼动睡眠行为障碍(RBD)的患者。记录由人工进行评分。开发了一种用于量化RSWA的自动算法,并与人工评分进行对比测试。RSWAi显示家庭测量和实验室测量之间的相关性为60%。RBD检测的灵敏度达到83%,特异性为79%,平衡准确率为81%。该算法准确地量化了RSWA,能够检测出RBD患者。这些发现可能有助于更便捷的睡眠测试,并为RBD筛查提供一种可能的替代方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/318e/11605064/7e5067bcec7a/41746_2024_1354_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/318e/11605064/53d22406b96e/41746_2024_1354_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/318e/11605064/0c8a542ba8f8/41746_2024_1354_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/318e/11605064/4a7404a34ce4/41746_2024_1354_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/318e/11605064/7e5067bcec7a/41746_2024_1354_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/318e/11605064/53d22406b96e/41746_2024_1354_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/318e/11605064/0c8a542ba8f8/41746_2024_1354_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/318e/11605064/4a7404a34ce4/41746_2024_1354_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/318e/11605064/7e5067bcec7a/41746_2024_1354_Fig4_HTML.jpg

相似文献

[1]
Semi automatic quantification of REM sleep without atonia in natural sleep environment.

NPJ Digit Med. 2024-11-28

[2]
Validation of automated detection of REM sleep without atonia using in-laboratory and in-home recordings.

J Clin Sleep Med. 2025-3-1

[3]
Validation of semiautomatic scoring of REM sleep without atonia in patients with RBD.

Sleep Med. 2018-3-31

[4]
Diagnostic thresholds for quantitative REM sleep phasic burst duration, phasic and tonic muscle activity, and REM atonia index in REM sleep behavior disorder with and without comorbid obstructive sleep apnea.

Sleep. 2014-10-1

[5]
Diagnosing REM sleep behavior disorder in Parkinson's disease without a gold standard: a latent-class model study.

Sleep. 2020-7-13

[6]
Normative and isolated rapid eye movement sleep without atonia in adults without REM sleep behavior disorder.

Sleep. 2019-10-9

[7]
Comparison between an automatic and a visual scoring method of the chin muscle tone during rapid eye movement sleep.

Sleep Med. 2014-6

[8]
Semi-automated Detection of Polysomnographic REM Sleep without Atonia (RSWA) in REM Sleep Behavioral Disorder.

Biomed Signal Process Control. 2019-5

[9]
Loss of rapid eye movement sleep atonia in patients with REM sleep behavioral disorder, narcolepsy, and isolated loss of REM atonia.

J Clin Sleep Med. 2013-10-15

[10]
Comparison Between Automatic and Visual Scorings of REM Sleep Without Atonia for the Diagnosis of REM Sleep Behavior Disorder in Parkinson Disease.

Sleep. 2017-2-1

引用本文的文献

[1]
Novel technologies for REM sleep behavior disorder detection for home screening in Parkinson's disease and related alpha-synucleinopathies.

NPJ Parkinsons Dis. 2025-7-3

本文引用的文献

[1]
Country differences in nocturnal sleep variability: Observations from a large-scale, long-term sleep wearable study.

Sleep Med. 2023-10

[2]
Monitoring sleep stages with a soft electrode array: Comparison against vPSG and home-based detection of REM sleep without atonia.

J Sleep Res. 2023-10

[3]
The evolving role of quantitative actigraphy in clinical sleep medicine.

Sleep Med Rev. 2023-4

[4]
Re-evaluating two popular EEG-based mobile sleep-monitoring devices for home use.

J Sleep Res. 2023-10

[5]
RBDtector: an open-source software to detect REM sleep without atonia according to visual scoring criteria.

Sci Rep. 2022-12-3

[6]
Ambulatory Detection of Isolated Rapid-Eye-Movement Sleep Behavior Disorder Combining Actigraphy and Questionnaire.

Mov Disord. 2023-1

[7]
Actigraphy Enables Home Screening of Rapid Eye Movement Behavior Disorder in Parkinson's Disease.

Ann Neurol. 2023-2

[8]
Deep-spindle: An automated sleep spindle detection system for analysis of infant sleep spindles.

Comput Biol Med. 2022-11

[9]
Advanced sleep spindle identification with neural networks.

Sci Rep. 2022-5-10

[10]
A meta-analysis of the first-night effect in healthy individuals for the full age spectrum.

Sleep Med. 2022-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索