Suppr超能文献

使用活动记录仪和问卷联合检测孤立性快动眼睡眠行为障碍的日间发作。

Ambulatory Detection of Isolated Rapid-Eye-Movement Sleep Behavior Disorder Combining Actigraphy and Questionnaire.

机构信息

Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark.

Department of Clinical Neurophysiology, Danish Center for Sleep Medicine, Rigshospitalet, Denmark.

出版信息

Mov Disord. 2023 Jan;38(1):82-91. doi: 10.1002/mds.29249. Epub 2022 Oct 18.

Abstract

BACKGROUND

Isolated rapid-eye-movement sleep behavior disorder (iRBD) is in most cases a prodrome of neurodegenerative synucleinopathies, affecting 1% to 2% of middle-aged and older adults; however, accurate ambulatory diagnostic methods are not available. Questionnaires lack specificity in nonclinical populations. Wrist actigraphy can detect characteristic features in individuals with RBD; however, high-frequency actigraphy has been rarely used.

OBJECTIVE

The aim was to develop a machine learning classifier using high-frequency (1-second resolution) actigraphy and a short patient survey for detecting iRBD with high accuracy and precision.

METHODS

The method involved analysis of home actigraphy data (for seven nights and more) and a nine-item questionnaire (RBD Innsbruck inventory and three synucleinopathy prodromes of subjective hyposmia, constipation, and orthostatic dizziness) in a data set comprising 42 patients with iRBD, 21 sleep clinic patients with other sleep disorders, and 21 community controls.

RESULTS

The actigraphy classifier achieved 95.2% (95% confidence interval [CI]: 88.3-98.7) sensitivity and 90.9% (95% CI: 82.1-95.8) precision. The questionnaire classifier achieved 90.6% accuracy and 92.7% precision, exceeding the performance of the Innsbruck RBD Inventory and prodromal questionnaire alone. Concordant predictions between actigraphy and questionnaire reached a specificity and precision of 100% (95% CI: 95.7-100.0) with 88.1% sensitivity (95% CI: 79.2-94.1) and outperformed any combination of actigraphy and a single question on RBD or prodromal symptoms.

CONCLUSIONS

Actigraphy detected iRBD with high accuracy in a mixed clinical and community cohort. This cost-effective fully remote procedure can be used to diagnose iRBD in specialty outpatient settings and has potential for large-scale screening of iRBD in the general population. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

摘要

背景

孤立性快动眼睡眠行为障碍(iRBD)在大多数情况下是神经退行性突触核蛋白病的前驱期,影响 1%至 2%的中老年人;然而,目前尚无准确的非卧床诊断方法。问卷在非临床人群中的特异性不足。腕部动作描记术可检测到 RBD 个体的特征;然而,高频动作描记术很少被使用。

目的

旨在开发一种使用高频(1 秒分辨率)动作描记术和简短患者调查的机器学习分类器,以实现 iRBD 的高精度和高精准度检测。

方法

该方法涉及对包含 42 例 iRBD 患者、21 例睡眠诊所其他睡眠障碍患者和 21 例社区对照患者的数据集进行家庭动作描记数据(七晚及以上)和九项问卷(因斯布鲁克 RBD 清单和三个突触核蛋白病前驱症状:嗅觉减退、便秘和直立性头晕)分析。

结果

动作描记术分类器的敏感性为 95.2%(95%置信区间[CI]:88.3-98.7),特异性为 90.9%(95% CI:82.1-95.8)。问卷分类器的准确率为 90.6%,特异性为 92.7%,超过了因斯布鲁克 RBD 清单和前驱症状问卷的单独表现。动作描记术和问卷的一致预测达到了 100%(95%CI:95.7-100.0)的特异性和 88.1%(95%CI:79.2-94.1)的敏感性,优于任何一种组合的动作描记术和单个 RBD 或前驱症状问题。

结论

动作描记术在混合临床和社区队列中以高准确性检测到 iRBD。这种具有成本效益的完全远程程序可用于在专科门诊环境中诊断 iRBD,并有可能在普通人群中进行大规模的 iRBD 筛查。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5cb/10092688/54d1dbc8c352/MDS-38-82-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验