Crequer E, Coton E, Cueff G, Cristiansen J V, Frisvad J C, Rodríguez de la Vega R C, Giraud T, Jany J-L, Coton M
Laboratoire Universitaire de Biodiversité Et Ecologie Microbienne, Univ. Brest, INRAE, 29280, Plouzane, France.
Laboratoire Ecologie Systématique et Evolution, UMR 8079, AgroParisTech, Université Paris-Saclay, CNRS, Bâtiment 680, 12 Route RD 128, 91190, Gif-Sur-Yvette, France.
IMA Fungus. 2024 Nov 28;15(1):38. doi: 10.1186/s43008-024-00167-4.
Fungi are known to produce many chemically diversified metabolites, yet their ecological roles are not always fully understood. The blue cheese fungus Penicillium roqueforti thrives in different ecological niches and is known to produce a wide range of metabolites, including mycotoxins. Three P. roqueforti populations have been domesticated for cheese production and two populations thrive in other anthropized environments, i.e., food, lumber and silage. In this study, we looked for differences in targeted and untargeted metabolite production profiles between populations using HPLC-HR-Q-TOF and UHPLC-Q-TOF-HR-MS/MS. The non-cheese populations produced several fatty acids and different terpenoids, lacking in cheese strains. The Termignon cheese population displayed intermediate metabolite profiles between cheese and non-cheese populations, as previously shown for other traits. The non-Roquefort cheese population with the strongest domestication syndrome, produced the lowest quantities of measured metabolites, including mycophenolic acid (MPA), andrastin A and PR toxin. Its inability to produce MPA was due to a deletion in the mpaC gene, while a premature stop codon in ORF 11 of the PR toxin gene cluster explained PR toxin absence and the accumulation of its intermediates, i.e., eremofortins A and B. In the Roquefort population, we detected no PR toxin nor eremofortins A or B, but found no indel or frameshift mutation, suggesting downregulation. The hypotoxigenic trait of domesticated cheese populations can be hypothesized to be linked to the loss of this ability through trait degeneration and/or the selection of low toxin producers. It may also be due to the fact that populations from other anthropized environments maintained high metabolite diversity as the bioactivities of these compounds are likely important in these ecological niches.
已知真菌能产生许多化学结构多样的代谢产物,但其生态作用并不总是被完全理解。蓝纹奶酪真菌罗克福特青霉在不同的生态位中生长,并且已知能产生多种代谢产物,包括霉菌毒素。罗克福特青霉的三个种群已被驯化用于奶酪生产,另外两个种群则在其他人为环境中生长,即食物、木材和青贮饲料。在本研究中,我们使用HPLC-HR-Q-TOF和UHPLC-Q-TOF-HR-MS/MS寻找不同种群之间靶向和非靶向代谢产物生产谱的差异。非奶酪种群产生了几种脂肪酸和不同的萜类化合物,而奶酪菌株中缺乏这些物质。特尔米尼翁奶酪种群的代谢产物谱介于奶酪和非奶酪种群之间,正如之前在其他性状中所显示的那样。驯化综合征最强的非罗克福特奶酪种群产生的被测代谢产物数量最少,包括霉酚酸(MPA)、安曲霉素A和PR毒素。其无法产生MPA是由于mpaC基因缺失,而PR毒素基因簇的ORF 11中的一个提前终止密码子解释了PR毒素的缺失及其中间体(即埃雷莫福汀A和B)的积累。在罗克福特种群中,我们没有检测到PR毒素或埃雷莫福汀A或B,但没有发现插入缺失或移码突变,这表明可能是下调。可以推测,驯化奶酪种群的低毒特性与通过性状退化和/或选择低毒素生产者而丧失这种能力有关。这也可能是由于来自其他人为环境的种群保持了较高的代谢产物多样性,因为这些化合物的生物活性在这些生态位中可能很重要。