Department of Genetic Epidemiology, University of Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, 93053, Germany.
Statistical Consulting Unit StaBLab, Department of Statistics, LMU Munich, Geschwister-Scholl-Platz 1, Munich, 80539, Germany.
Genome Biol. 2024 Nov 28;25(1):300. doi: 10.1186/s13059-024-03439-9.
Genome-wide association studies (GWAS) have identified thousands of loci for disease-related human traits in cross-sectional data. However, the impact of age on genetic effects is underacknowledged. Also, identifying genetic effects on longitudinal trait change has been hampered by small sample sizes for longitudinal data. Such effects on deteriorating trait levels over time or disease progression can be clinically relevant.
Under certain assumptions, we demonstrate analytically that genetic-by-age interaction observed in cross-sectional data can be indicative of genetic association on longitudinal trait change. We propose a 2-stage approach with genome-wide pre-screening for genetic-by-age interaction in cross-sectional data and testing identified variants for longitudinal change in independent longitudinal data. Within UK Biobank cross-sectional data, we analyze 8 complex traits (up to 370,000 individuals). We identify 44 genetic-by-age interactions (7 loci for obesity traits, 26 for pulse pressure, few to none for lipids). Our cross-trait view reveals trait-specificity regarding the proportion of loci with age-modulated effects, which is particularly high for pulse pressure. Testing the 44 variants in longitudinal data (up to 50,000 individuals), we observe significant effects on change for obesity traits (near APOE, TMEM18, TFAP2B) and pulse pressure (near FBN1, IGFBP3; known for implication in arterial stiffness processes).
We provide analytical and empirical evidence that cross-sectional genetic-by-age interaction can help pinpoint longitudinal-change effects, when cross-sectional data surpasses longitudinal sample size. Our findings shed light on the distinction between traits that are impacted by age-dependent genetic effects and those that are not.
全基因组关联研究(GWAS)已经在横断面数据中确定了数千个与疾病相关的人类特征的基因座。然而,年龄对遗传效应的影响尚未得到充分认识。此外,由于纵向数据的样本量较小,因此确定遗传对纵向特征变化的影响受到阻碍。随着时间的推移或疾病进展,这种对特征水平恶化的遗传影响可能具有临床相关性。
在某些假设下,我们通过分析证明,在横断面数据中观察到的基因-年龄相互作用可以表明对纵向特征变化的遗传关联。我们提出了一种两阶段方法,在横断面数据中进行全基因组预筛选以检测基因-年龄相互作用,并在独立的纵向数据中对鉴定出的变体进行纵向变化的测试。在英国生物库的横断面数据中,我们分析了 8 种复杂特征(多达 37 万人)。我们确定了 44 个基因-年龄相互作用(肥胖特征的 7 个基因座,脉搏压的 26 个基因座,脂质的很少或没有)。我们的跨特征视图揭示了与具有年龄调节效应的基因座比例有关的特征特异性,这对于脉搏压尤为明显。在纵向数据中测试这 44 个变体(多达 50,000 人),我们观察到肥胖特征(APOE、TMEM18、TFAP2B 附近)和脉搏压(FBN1、IGFBP3 附近;已知对动脉僵硬过程有影响)变化的显著影响。
我们提供了分析和经验证据,表明当横断面数据超过纵向样本量时,横断面遗传-年龄相互作用可以帮助确定纵向变化的影响。我们的发现揭示了受年龄相关遗传效应影响的特征与不受影响的特征之间的区别。