Kasela Silva, Luitva Laura Birgit, Krebs Kristi, Möls Märt, Milani Lili, Alver Maris
Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia.
Institute of Mathematics and Statistics, University of Tartu, Tartu, Estonia.
J Transl Med. 2025 Jul 2;23(1):727. doi: 10.1186/s12967-025-06782-y.
Understanding interindividual variability in medication dosing is central to precision medicine. Despite significant pharmacogenomic (PGx) insights into key biological pathways influencing drug response, the polygenic contribution to dose variability and the potential of electronic health records for maintenance dose estimation remain largely unexplored.
We leveraged longitudinal drug purchase data linked to the Estonian Biobank (N = 212,000) to derive individual-level daily doses per purchase as well as median and maximum doses as consolidated metrics across purchases for cardiovascular and psychiatric drugs: statins, warfarin, metoprolol, antidepressants, and antipsychotics. Associations with polygenic scores (PGSs) for 16 traits were assessed using linear mixed models and multivariable regression with a forward stepwise approach. Genome-wide association studies (GWAS) were followed by gene set enrichment analyses for known PGx genes.
Sample sizes ranged from 684 (antipsychotics) to 20,642 (statins), with median doses reflecting typical maintenance doses. Trait-specific PGSs were significant for the daily dose of statins (coronary heart disease PGS, β = 0.02, P = 5.9 × 10) and metoprolol (systolic blood pressure PGS, β = 0.03, P = 7.5 × 10). The PGS for body mass index was linked to daily doses of statins (β = 0.02, P = 6.4 × 10), metoprolol (β = 0.03, P = 1.4 × 10), and warfarin (β = 0.03, P = 0.001), whereas the PGS for educational attainment showed opposing associations with statins (β = - 0.01, P = 5.9 × 10) and antidepressants (β = 0.01, P = 0.002). Median and maximum doses yielded similar, though generally weaker, associations. GWAS confirmed signals for metoprolol (CYP2D6, P = 1.1 × 10) and warfarin (CYP2C9, P = 8.9 × 10; VKORC1, P = 4.2 × 10), as well as enrichment of PGx signals for individual statins (P = 0.02 for simvastatin, P = 0.03 for atorvastatin). Associations remained significant after adjusting for disease-specific PGSs, suggesting independent contributions of PGx loci.
These findings illustrate the feasibility and value of leveraging real-world electronic health records to derive pharmacologically meaningful medication dosing phenotypes. Both polygenic and pharmacogenomic signals contribute to dose variability, underscoring their potential utility in personalized prescribing strategies.
了解药物剂量的个体间差异是精准医学的核心。尽管在影响药物反应的关键生物学途径方面有了重要的药物基因组学(PGx)见解,但多基因对剂量变异性的贡献以及电子健康记录在维持剂量估计方面的潜力在很大程度上仍未得到探索。
我们利用与爱沙尼亚生物银行相关联的纵向药物购买数据(N = 212,000),得出每次购买的个体每日剂量以及作为心血管和精神药物(他汀类药物、华法林、美托洛尔、抗抑郁药和抗精神病药)购买综合指标的中位数和最大剂量。使用线性混合模型和向前逐步多变量回归评估与16个性状的多基因评分(PGS)的关联。全基因组关联研究(GWAS)之后是对已知PGx基因的基因集富集分析。
样本量从684(抗精神病药)到20,642(他汀类药物)不等,中位数剂量反映了典型的维持剂量。特定性状的PGS对他汀类药物的每日剂量(冠心病PGS,β = 0.02,P = 5.9×10)和美托洛尔(收缩压PGS,β = 0.03,P = 7.5×10)有显著影响。体重指数的PGS与他汀类药物(β = 0.02,P = 6.4×10)、美托洛尔(β = 0.03,P = 1.4×10)和华法林(β = 0.03,P = 0.001)的每日剂量相关,而受教育程度的PGS与他汀类药物(β = -0.01,P = 5.9×10)和抗抑郁药(β = 0.01,P = 0.002)呈现相反的关联。中位数和最大剂量产生了相似但通常较弱的关联。GWAS确认了美托洛尔(CYP2D6,P = 1.1×10)和华法林(CYP2C9,P = 8.9×10;VKORC1,P = 4.2×10)的信号,以及个别他汀类药物的PGx信号富集(辛伐他汀P = 0.02,阿托伐他汀P = 0.03)。在调整疾病特异性PGS后,关联仍然显著,表明PGx位点的独立贡献。
这些发现说明了利用真实世界电子健康记录得出具有药理学意义的药物剂量表型的可行性和价值。多基因和药物基因组信号都对剂量变异性有贡献,强调了它们在个性化处方策略中的潜在效用。