Suppr超能文献

生物信息学分析胶质母细胞瘤鉴定出一组潜在的治疗性生物标志物。

Bioinformatics Examination of Glioblastoma Identifies a Potential Panel of Therapeutic Biomarkers.

机构信息

Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.

Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.

出版信息

Asian Pac J Cancer Prev. 2024 Nov 1;25(11):4035-4041. doi: 10.31557/APJCP.2024.25.11.4035.

Abstract

OBJECTIVE

Glioblastoma, previously recognized as glioblastoma multiform (GBM), is the most aggressive and most common type of cancer that originates in the brain and has a very poor prognosis for survival. Glioblastoma, as one of the lethal cancers of the brain, is important to be studied in terms of molecular exploration.

METHODS

Bioinformatics approaches could be a promising complementary study for identifying more robust biomarkers. This study evaluates the gene expression profile of normal brain endothelial cells versus glioblastoma tumor cells with positive CD3 in more depth by applying R Studio and Cytoscape and its plug-ins.

RESULTS

A network of differentially expressed genes (DEGs) introduced promising candidates comprised of TP53, EGFR, FN1, JUN, and CDC42 and their related biological processes. Comprised of differentially expressed genes, this panel's dysregulation could significantly affect the stability of the protein-protein interaction (PPI) network. Moreover, previous studies have validated these genes' relevance to this cancer type.

CONCLUSION

In conclusion, the molecular profile of glioblastoma aids in drug targeting following thorough validation assessments. Five key genes and their related biological processes are possible  drug targets to control glioblastoma.

摘要

目的

胶质母细胞瘤,以前被认为是多形性胶质母细胞瘤(GBM),是起源于大脑的最具侵袭性和最常见的癌症类型,其生存预后极差。胶质母细胞瘤作为大脑的致命癌症之一,从分子探索的角度进行研究很重要。

方法

生物信息学方法可能是识别更稳健生物标志物的有前途的补充研究。本研究通过应用 R Studio 和 Cytoscape 及其插件,更深入地评估了正常脑内皮细胞与 CD3 阳性胶质母细胞瘤肿瘤细胞的基因表达谱。

结果

一个差异表达基因(DEG)网络引入了有前途的候选基因,包括 TP53、EGFR、FN1、JUN 和 CDC42 及其相关的生物学过程。该面板的失调由差异表达基因组成,可能会显著影响蛋白质-蛋白质相互作用(PPI)网络的稳定性。此外,先前的研究已经验证了这些基因与这种癌症类型的相关性。

结论

总之,胶质母细胞瘤的分子谱有助于在进行彻底的验证评估后进行药物靶向治疗。五个关键基因及其相关的生物学过程可能是控制胶质母细胞瘤的药物靶点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验