Suppr超能文献

以 T 细胞受体为中心的多模态单细胞数据分析观点。

T cell receptor-centric perspective to multimodal single-cell data analysis.

机构信息

Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium.

Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), Antwerp, Belgium.

出版信息

Sci Adv. 2024 Nov 29;10(48):eadr3196. doi: 10.1126/sciadv.adr3196.

Abstract

The T cell receptor (TCR), despite its importance, is underutilized in single-cell analysis, with gene expression features solely driving current strategies. Here, we argue for a TCR-first approach, more suited toward T cell repertoires. To this end, we curated a large T cell atlas from 12 prominent human studies, containing in total 500,000 T cells spanning multiple diseases, including melanoma, head and neck cancer, blood cancer, and lung transplantation. Here, we identified severe limitations in cell-type annotation using unsupervised approaches and propose a more robust standard using a semi-supervised method or the TCR arrangement. We showcase the utility of a TCR-first approach through application of the STEGO.R tool for the identification of treatment-related dynamics and previously unknown public T cell clusters with potential antigen-specific properties. Thus, the paradigm shift to a TCR-first can highlight overlooked key T cell features that have the potential for improvements in immunotherapy and diagnostics.

摘要

T 细胞受体 (TCR) 尽管非常重要,但在单细胞分析中的应用还不够充分,目前的策略仅依赖于基因表达特征。在这里,我们主张采用 TCR 优先的方法,更适合于 T 细胞库。为此,我们从 12 项重要的人类研究中整理了一个大型 T 细胞图谱,其中总共包含了 50 万个 T 细胞,涵盖了多种疾病,包括黑色素瘤、头颈部癌症、血液癌和肺移植。在这里,我们发现使用无监督方法进行细胞类型注释存在严重的局限性,并提出了一种更稳健的标准,使用半监督方法或 TCR 排列。我们通过应用 STEGO.R 工具来展示 TCR 优先方法的实用性,以识别与治疗相关的动态以及具有潜在抗原特异性的先前未知的公共 T 细胞簇。因此,向 TCR 优先方法的范式转变可以突出那些被忽视的关键 T 细胞特征,这些特征有可能改善免疫疗法和诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a0d/11606500/1c71bcc16fb9/sciadv.adr3196-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验