Suppr超能文献

组织特异性对细胞色素c氧化酶缺乏的适应性塑造了生理结果。

Tissue-specific adaptations to cytochrome c oxidase deficiency shape physiological outcomes.

作者信息

Popovic Milica, Isermann Lea, Geißen Simon, Senft Katharina, Georgomanolis Theodoros, Baldus Stephan, Frezza Christian, Trifunovic Aleksandra

机构信息

Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Institute for Mitochondrial Diseases and Aging, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50931 Cologne, Germany.

Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, 50937, Germany; Clinic III for Internal Medicine, University Hospital Cologne, 50937, Germany; Center for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne, Germany.

出版信息

Biochim Biophys Acta Mol Basis Dis. 2025 Mar;1871(3):167567. doi: 10.1016/j.bbadis.2024.167567. Epub 2024 Nov 28.

Abstract

It becomes increasingly clear that the tissue specificity of mitochondrial diseases might in part rely on their ability to compensate for mitochondrial defects, contributing to the heterogeneous nature of mitochondrial diseases. Here, we investigated tissue-specific responses to cytochrome c oxidase (CIV or COX) deficiency using a mouse model with heart and skeletal muscle-specific depletion of the COX assembly factor COX10. At three weeks of age, both tissues exhibit pronounced CIV depletion but respond differently to oxidative phosphorylation (OXPHOS) impairment. Heart-specific COX10 depletion caused severe dilated cardiomyopathy, while skeletal muscle experiences less damage. Cardiac CIV deficiency triggered extensive metabolic remodelling and stress response activation, potentially worsening cardiomyopathy, whereas skeletal muscle showed no stress response or significant metabolic changes. Our findings highlight distinct tissue capacities for managing CIV deficiency, explaining how identical primary defects can lead to different phenotypic outcomes and contribute to the heterogeneous progression of mitochondrial diseases.

摘要

越来越明显的是,线粒体疾病的组织特异性可能部分取决于它们补偿线粒体缺陷的能力,这导致了线粒体疾病的异质性。在这里,我们使用心脏和骨骼肌特异性缺失COX组装因子COX10的小鼠模型,研究了对细胞色素c氧化酶(CIV或COX)缺乏的组织特异性反应。在三周龄时,两种组织都表现出明显的CIV缺失,但对氧化磷酸化(OXPHOS)损伤的反应不同。心脏特异性COX10缺失导致严重的扩张型心肌病,而骨骼肌受到的损伤较小。心脏CIV缺乏引发了广泛的代谢重塑和应激反应激活,可能会使心肌病恶化,而骨骼肌则没有应激反应或明显的代谢变化。我们的研究结果突出了不同组织处理CIV缺乏的能力,解释了相同的原发性缺陷如何导致不同的表型结果,并促成线粒体疾病的异质性进展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验