Suppr超能文献

眼科基于人工智能的患者和手术材料验证系统的大规模观察性研究:37529例病例的真实世界评估

Large-scale observational study of AI-based patient and surgical material verification system in ophthalmology: real-world evaluation in 37 529 cases.

作者信息

Tabuchi Hitoshi, Ishitobi Naofumi, Deguchi Hodaka, Nakaniida Yuta, Tanaka Hayato, Akada Masahiro, Tanabe Mao

机构信息

Department of Technology and Design Thinking for Medicine, Hiroshima University, Hiroshima, Japan

Department of Ophthalmology, Tsukazaki Hospital, Himeji, Japan.

出版信息

BMJ Qual Saf. 2025 Jun 19;34(7):433-442. doi: 10.1136/bmjqs-2024-018018.

Abstract

BACKGROUND

Surgical errors in ophthalmology can have devastating consequences. We developed an artificial intelligence (AI)-based surgical safety system to prevent errors in patient identification, surgical laterality and intraocular lens (IOL) selection. This study aimed to evaluate its effectiveness in real-world ophthalmic surgical settings.

METHODS

In this retrospective observational before-and-after implementation study, we analysed 37 529 ophthalmic surgeries (18 767 pre-implementation, 18 762 post implementation) performed at Tsukazaki Hospital, Japan, between 1 March 2019 and 31 March 2024. The AI system, integrated with the WHO surgical safety checklist, was implemented for patient identification, surgical laterality verification and IOL authentication.

RESULTS

Post implementation, five medical errors (0.027%) occurred, with four in non-authenticated cases (where the AI system was not fully implemented or properly used), compared with one (0.0053%) pre-implementation (p=0.125). Of the four non-authenticated errors, two were laterality errors during the initial implementation period and two were IOL implantation errors involving unlearned IOLs (7.3% of cases) due to delayed AI updates. The AI system identified 30 near misses (0.16%) post implementation, vs 9 (0.048%) pre-implementation (p=0.00067), surgical laterality errors/near misses occurred at 0.039% (7/18 762) and IOL recognition at 0.29% (28/9713). The system achieved>99% implementation after 3 months. Authentication performance metrics showed high efficiency: facial recognition (1.13 attempts, 11.8 s), surgical laterality (1.05 attempts, 3.10 s) and IOL recognition (1.15 attempts, 8.57 s). Cost-benefit analysis revealed potential benefits ranging from US$181 946.94 to US$2 769 129.12 in conservative and intermediate scenarios, respectively.

CONCLUSIONS

The AI-based surgical safety system significantly increased near miss detection and showed potential economic benefits. However, errors in non-authenticated cases underscore the importance of consistent system use and integration with existing safety protocols. These findings emphasise that while AI can enhance surgical safety, its effectiveness depends on proper implementation and continuous refinement.

摘要

背景

眼科手术失误可能会产生灾难性后果。我们开发了一种基于人工智能(AI)的手术安全系统,以防止患者身份识别、手术部位及人工晶状体(IOL)选择方面的失误。本研究旨在评估其在实际眼科手术环境中的有效性。

方法

在这项实施前后的回顾性观察研究中,我们分析了2019年3月1日至2024年3月31日期间在日本冢崎医院进行的37529例眼科手术(实施前18767例,实施后18762例)。该AI系统与世界卫生组织手术安全核对表集成,用于患者身份识别、手术部位核查及IOL认证。

结果

实施后发生了5起医疗差错(0.027%),其中4起发生在未认证的病例中(AI系统未完全实施或未正确使用),而实施前为1起(0.0053%)(p=0.125)。在4起未认证差错中,2起是在初始实施阶段的部位差错,2起是由于AI更新延迟导致的涉及未录入IOL的IOL植入差错(占病例的7.3%)。AI系统在实施后识别出30起险些失误(0.16%),而实施前为9起(0.048%)(p=0.00067),手术部位差错/险些失误发生率为0.039%(7/18762),IOL识别差错发生率为0.29%(28/9713)。该系统在3个月后实现了>99%的使用率。认证性能指标显示效率很高:面部识别(1.13次尝试,11.8秒)、手术部位核查(1.05次尝试,3.10秒)和IOL识别(1.15次尝试,8.57秒)。成本效益分析显示,在保守和中等情况下,潜在效益分别为181946.94美元至2769129.12美元。

结论

基于AI的手术安全系统显著提高了险些失误的检测率,并显示出潜在的经济效益。然而,未认证病例中的差错凸显了系统持续使用以及与现有安全协议集成的重要性。这些发现强调,虽然AI可以提高手术安全性,但其有效性取决于正确实施和持续完善。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ab8/12229072/040699c8d38a/bmjqs-34-7-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验