Suppr超能文献

使用视觉序数评分和深度学习评分对系统性硬化症患者的冠状动脉钙化进行量化:与系统性硬化症临床特征的关联

Quantification of coronary artery calcification in systemic sclerosis using visual ordinal and deep learning scoring: Association with systemic sclerosis clinical features.

作者信息

Luo Yiming, Hanuska Daniel, Xu Jiehui, Salvatore Mary M, Bernstein Elana J

机构信息

Division of Rheumatology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.

Hunter College, City University of New York, New York, NY, USA.

出版信息

Semin Arthritis Rheum. 2025 Feb;70:152598. doi: 10.1016/j.semarthrit.2024.152598. Epub 2024 Nov 20.

Abstract

OBJECTIVE

To investigate the association between systemic sclerosis (SSc) clinical features and the extent and progression of coronary artery calcifications.

METHODS

We conducted a single-center retrospective cohort study of patients with SSc. In our primary aim, we investigated the association between SSc clinical features and the annual progression of coronary artery calcium (CAC) scores quantified using the visual ordinal scoring method. In our secondary aim, we utilized DeepCAC, a deep learning-based method, to quantify coronary artery calcifications ("deep learning CAC score"), and explored its association with SSc clinical features.

RESULTS

Eighty-six SSc patients were included in the primary aim and 171 in the secondary aim. SSc disease duration was inversely associated with annual ordinal CAC score progression in the demographics-adjusted model (coefficient = -0.004, 95 % CI -0.006 to -0.001, p-value = 0.01) and the demographics- and cardiovascular (CV) risk factor-adjusted model (coefficient = -0.004, 95 % CI -0.008 to -0.0004, p-value = 0.03). The presence of "fingertip ischemic ulcers or digital pitting scars" (demographics-adjusted model: coefficient = 1.07, 95 % CI 0.29 to 1.85, p < 0.01; demographics- and CV risk factor-adjusted model: coefficient = 1.39, 95 % CI 0.43 to 2.34, p < 0.01) and Group 1 pulmonary hypertension (demographics-adjusted model: coefficient = 1.34, 95 % CI 0.34 to 2.35, p < 0.01; demographics- and CV risk factor-adjusted model: coefficient = 1.52, 95 % CI 0.38 to 2.65, p < 0.01) were both associated with the deep learning CAC score.

CONCLUSION

Our results suggest that the progression of coronary artery calcification accelerates early during the SSc disease course and that severe microvasculopathy may be a risk factor for atherosclerotic CVD.

摘要

目的

研究系统性硬化症(SSc)临床特征与冠状动脉钙化程度及进展之间的关联。

方法

我们对SSc患者进行了一项单中心回顾性队列研究。在主要目标中,我们研究了SSc临床特征与使用视觉序数评分法量化的冠状动脉钙化(CAC)评分的年度进展之间的关联。在次要目标中,我们使用基于深度学习的方法DeepCAC来量化冠状动脉钙化(“深度学习CAC评分”),并探讨其与SSc临床特征的关联。

结果

主要目标纳入了86例SSc患者,次要目标纳入了171例。在人口统计学调整模型(系数 = -0.004,95%可信区间 -0.006至 -0.001,p值 = 0.01)和人口统计学及心血管(CV)危险因素调整模型(系数 = -0.004,95%可信区间 -0.008至 -0.0004,p值 = 0.03)中,SSc病程与年度序数CAC评分进展呈负相关。“指尖缺血性溃疡或指腹点状瘢痕”的存在(人口统计学调整模型:系数 = 1.07,95%可信区间0.29至1.85,p < 0.01;人口统计学及CV危险因素调整模型:系数 = 1.39,95%可信区间0.43至2.34,p < 0.01)和1型肺动脉高压(人口统计学调整模型:系数 = 1.34,95%可信区间0.34至2.35,p < 0.01;人口统计学及CV危险因素调整模型:系数 =

相似文献

4
Calcium Scoring at Coronary CT Angiography Using Deep Learning.冠状动脉 CT 血管造影中的深度学习钙评分。
Radiology. 2022 Feb;302(2):309-316. doi: 10.1148/radiol.2021211483. Epub 2021 Nov 23.
7
Cardiac calcium score in systemic sclerosis.系统性硬化症中的心脏钙评分
Clin Rheumatol. 2022 Jan;41(1):105-114. doi: 10.1007/s10067-021-05887-1. Epub 2021 Sep 8.

引用本文的文献

本文引用的文献

8
Major Global Coronary Artery Calcium Guidelines.主要全球冠状动脉钙化指南。
JACC Cardiovasc Imaging. 2023 Jan;16(1):98-117. doi: 10.1016/j.jcmg.2022.06.018. Epub 2022 Sep 14.
9
Systemic sclerosis.系统性硬化症。
Lancet. 2023 Jan 28;401(10373):304-318. doi: 10.1016/S0140-6736(22)01692-0. Epub 2022 Nov 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验