Suppr超能文献

用于合成下一代 HIV 治疗药物中环三氮杂二硫酰胺 (CADA) 类似物的前沿生物信息学策略。

Cutting-edge Bioinformatics strategies for synthesizing Cyclotriazadisulfonamide (CADA) analogs in next-Generation HIV therapies.

机构信息

Department of Biochemistry, College of Allied Sciences, De La Salle Medical and Health Sciences Institute, City of Dasmariñas, Cavite, 4114, Philippines.

Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, 4331, Bangladesh.

出版信息

Sci Rep. 2024 Nov 30;14(1):29764. doi: 10.1038/s41598-024-77106-1.

Abstract

Cyclotriazadisulfonamide (CADA) is a macrocyclic compound known for its unique mechanism in inhibiting HIV infection by downregulating the CD4 T-cell receptor, a crucial entry point for the virus. Unlike other antiretrovirals, CADA exhibits activity against a wide range of HIV strains, as all HIV variants require CD4 binding for infection. Furthermore, CADA has shown a synergistic effect with clinically approved anti-HIV drugs, offering potential for enhanced therapeutic strategies (Vermeire & Schols, [65]). One proposed mechanism for CADA's inhibition of the CD4 receptor involves blocking the gates of the Sec61 channel, thereby preventing its translocation. However, CADA suffers from poor solubility and bioavailability. To address this, the study aimed to design CADA analogs with improved binding to the Sec61 channel, enhanced bioavailability, and reduced toxicity. The analogs were designed using SeeSAR, with Avogadro and Meeko used for 3D configuration and pseudoatom placement, respectively. AutoDock Vina version 1.2.4 was employed to predict the binding energies of these analogs. Of the 113 analogs designed, 93 demonstrated a more negative binding energy to the Sec61 channel compared to CADA. Structure-binding energy analyses were done to the top-binding analogs to show favorable structural modifications. Enzyme-ligand interactions were analyzed to elucidate the forces contributing to these binding energies. Additionally, 33 of the 113 analogs were deemed bioavailable using a bioavailability criteria specific for macrocycles. Toxicity predictions using PASS Online and StopTox identified analogs JGL023, JGL024, JGL032, and JGL047 as potential drug candidates. Molecular dynamics simulations using Gromacs-2020.4 revealed that JGL023 and JGL032 exhibited the most favorable binding to the Sec61 channel, as determined by evaluating ligand and residue flexibility, compactness, contact frequency, motion pathways, free energy, and other relevant parameters. Synthetic routes for these four analogs were proposed for future studies. The results of this study offer a new perspective on developing drugs to inhibit HIV entry.

摘要

环三嗪二磺酰胺(CADA)是一种大环化合物,因其通过下调 HIV 感染的关键进入点——CD4 T 细胞受体,从而抑制 HIV 感染的独特机制而闻名。与其他抗逆转录病毒药物不同,CADA 对广泛的 HIV 株具有活性,因为所有 HIV 变体都需要 CD4 结合才能感染。此外,CADA 与临床批准的抗 HIV 药物表现出协同作用,为增强治疗策略提供了潜力(Vermeire & Schols,[65])。CADA 抑制 CD4 受体的一种假设机制涉及阻断 Sec61 通道的门,从而阻止其易位。然而,CADA 存在溶解度和生物利用度差的问题。为了解决这个问题,该研究旨在设计与 Sec61 通道具有更好结合、增强生物利用度和降低毒性的 CADA 类似物。使用 SeeSAR 设计类似物,分别使用 Avogadro 和 Meeko 进行 3D 构象和拟原子放置。使用 AutoDock Vina 版本 1.2.4 预测这些类似物的结合能。在所设计的 113 个类似物中,有 93 个对 Sec61 通道的结合能比 CADA 更负。对 top-binding 类似物进行结构-结合能分析,以显示有利的结构修饰。分析酶-配体相互作用,以阐明导致这些结合能的力。此外,使用针对大环化合物的特定生物利用度标准,有 33 个类似物被认为是可生物利用的。使用 PASS Online 和 StopTox 进行毒性预测,确定类似物 JGL023、JGL024、JGL032 和 JGL047 为潜在的候选药物。使用 Gromacs-2020.4 进行分子动力学模拟表明,JGL023 和 JGL032 与 Sec61 通道的结合最稳定,这是通过评估配体和残基的灵活性、紧凑性、接触频率、运动途径、自由能和其他相关参数来确定的。为这四个类似物提出了未来研究的合成路线。这项研究的结果为开发抑制 HIV 进入的药物提供了新的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23c9/11607333/f8b0705a678b/41598_2024_77106_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验