Singh Vivek Kumar, Kucukgoz Burak, Murphy Declan C, Xiong Xiaofan, Steel David H, Obara Boguslaw
School of Computing, Newcastle University, Newcastle upon Tyne, UK.
Bioscience Institute, Newcastle University, Newcastle upon Tyne, UK.
Comput Biol Med. 2022 Jan;140:105070. doi: 10.1016/j.compbiomed.2021.105070. Epub 2021 Dec 1.
In this article, we present a new benchmark for the segmentation of the retinal external limiting membrane (ELM) using an image dataset of spectral domain optical coherence tomography (OCT) scans in a patient population with idiopathic full-thickness macular holes. Specifically, the dataset used contains OCT images from one eye of 107 patients with an idiopathic full-thickness macular hole. In total, the dataset contains 5243 individual 2-dimensional (2-D) OCT image slices, with each patient contributing 49 individual spectral-domain OCT tagged image slices. We display precise image-wise binary annotations to segment the ELM line. The OCT images present high variations in image contrast, motion, brightness, and speckle noise which can affect the robustness of applied algorithms, so we performed an extensive OCT imaging and annotation data quality analysis. Imaging data quality control included noise, blurriness and contrast scores, motion estimation, darkness and average pixel scores, and anomaly detection. Annotation quality was measured using gradient mapping of ELM line annotation confidence, and idiopathic full-thickness macular hole detection. Finally, we compared qualitative and quantitative results with seven state-of-the-art machine learning-based segmentation methods to identify the ELM line with an automated system.
在本文中,我们使用特发性全层黄斑裂孔患者群体的光谱域光学相干断层扫描(OCT)扫描图像数据集,提出了一种用于视网膜外限制膜(ELM)分割的新基准。具体而言,所使用的数据集包含107例特发性全层黄斑裂孔患者一只眼睛的OCT图像。该数据集总共包含5243个单独的二维(2-D)OCT图像切片,每位患者贡献49个单独的光谱域OCT标记图像切片。我们展示了用于分割ELM线的精确逐图像二进制注释。OCT图像在图像对比度、运动、亮度和斑点噪声方面存在很大差异,这可能会影响应用算法的稳健性,因此我们进行了广泛的OCT成像和注释数据质量分析。成像数据质量控制包括噪声、模糊度和对比度评分、运动估计、暗度和平均像素评分以及异常检测。使用ELM线注释置信度的梯度映射和特发性全层黄斑裂孔检测来衡量注释质量。最后,我们将定性和定量结果与七种基于机器学习的先进分割方法进行比较,以使用自动化系统识别ELM线。