Banicod Riza Jane S, Ntege Wilson, Njiru Moses Njeru, Abubakar Woru Hamzat, Kanthenga Hopeful Tusalifye, Javaid Aqib, Khan Fazlurrahman
KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Fisheries Postharvest Research and Development Division, National Fisheries Research and Development Institute, Quezon City 1103, Philippines.
KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Fisheries Control Regulation and Quality Assurance, Ministry of Agriculture, Animal Industry and Fisheries, Entebbe 10101, Uganda.
Int J Food Microbiol. 2025 Jan 30;428:110996. doi: 10.1016/j.ijfoodmicro.2024.110996. Epub 2024 Nov 28.
Protein-rich diets often contain high quantities of biogenic amines (BAs), notably histamine and tyramine, which pose substantial health hazards owing to their toxicity. BAs are primarily produced by the microbial decarboxylation of free amino acids. Lactic acid bacteria (LAB) can either produce BAs using substrate-specific decarboxylase enzymes or degrade them into non-toxic compounds using amine-degrading enzymes such as amine oxidase and multicopper oxidase. Furthermore, LAB may inhibit BA-producing microbes by generating bioactive metabolites, including organic acids and bacteriocins. This paper thoroughly explores the processes underlying BA production and degradation in LAB, with a focus on the diversity of enzymes involved. Metabolic mapping of LAB strains at the genus and species levels reveals their involvement in BA metabolism, from production to degradation. The phylogenetic-based evolutionary relatedness of BA-producing and BA-degrading enzymes among LAB strains sheds light on their functional adaptability to various metabolic needs and ecological settings. These findings have significant practical implications for establishing better microbial management strategies in food production, particularly through strategically using starter or bioprotective cultures to reduce BA buildup. By highlighting the evolutionary and metabolic diversity of LAB, this review helps to optimize industrial fermentation processes, improve food safety protocols, and advance future research and innovation in BA management, ultimately protecting consumer health and supporting regulatory compliance.
富含蛋白质的饮食通常含有大量的生物胺(BAs),尤其是组胺和酪胺,它们因其毒性而对健康构成重大危害。生物胺主要由游离氨基酸的微生物脱羧作用产生。乳酸菌(LAB)既可以使用底物特异性脱羧酶产生生物胺,也可以使用胺氧化酶和多铜氧化酶等胺降解酶将它们降解为无毒化合物。此外,乳酸菌可能通过产生包括有机酸和细菌素在内的生物活性代谢产物来抑制产生生物胺的微生物。本文深入探讨了乳酸菌中生物胺产生和降解的潜在过程,重点关注所涉及酶的多样性。在属和种水平上对乳酸菌菌株进行代谢图谱分析,揭示了它们在生物胺代谢中的作用,从产生到降解。乳酸菌菌株中产生生物胺和降解生物胺的酶基于系统发育的进化相关性,揭示了它们对各种代谢需求和生态环境的功能适应性。这些发现对于在食品生产中建立更好的微生物管理策略具有重要的实际意义,特别是通过战略性地使用发酵剂或生物保护培养物来减少生物胺的积累。通过强调乳酸菌的进化和代谢多样性,本综述有助于优化工业发酵过程,改进食品安全协议,并推动生物胺管理方面的未来研究与创新,最终保护消费者健康并支持法规合规。