Wang Bingjin, Liu Mingtao, Ke Wencan, Hua Wenbin, Zeng Xianlin, Yang Cao
Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
Department of Orthopaedics, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, 266042, China.
Spine J. 2025 May;25(5):1042-1049. doi: 10.1016/j.spinee.2024.10.026. Epub 2024 Nov 28.
Lumbar total en bloc spondylectomy and internal fixation allows the removal of spinal tumors and the reconstruction of spinal stability. However, postoperative internal fixation failure due to unmatched spinal biomechanics remains obscure.
This study aimed to assess the biomechanical characteristics of additive manufactured (AM) porous polyetheretherketone (PEEK) artificial vertebral body for total en bloc spondylectomy and internal fixation.
STUDY DESIGN/SETTING: Comparative finite element (FE) study.
We created porous artificial vertebral bodies using medical-grade PEEK filaments and fused deposition modeling (FDM) technology, and evaluated the mechanical properties of the solid and porous implants. A finite element model of intact L1-L5 was created to analyze biomechanical characteristics of 5 operative constructs for reconstructing the lumbar anterior column. The lumbar anterior column was reconstructed using a titanium alloy mesh and bone graft (Ti+B) and AM PEEK artificial vertebral bodies with solid or porous structures. The maximum von Mises stresses of implants and adjacent structures were analyzed and compared under physiological conditions.
AM PEEK artificial vertebral bodies reduced von Mises stress on the artificial vertebral body, adjacent vertebral bodies, and intervertebral discs. The AM porous PEEK artificial vertebral body (PEEK-500) exhibited the lowest von Mises stress of the artificial vertebral body, adjacent vertebral bodies, and intervertebral discs.
Ti+B increased the maximum stress on adjacent vertebral bodies, suggesting that it has the potential for mesh subsidence. Moreover, PEEK-500 had minimal impact on the internal implants and adjacent structures. This indicated that the lumbar anterior column reconstructed with AM porous PEEK artificial vertebral bodies may decrease the risk of postoperative internal fixation failure and adjacent segment degeneration.
Manufactured porous PEEK artificial vertebral bodies demonstrated a minimal impact on both the internal implants and adjacent structures. This suggests that reconstructing the lumbar anterior column with AM porous PEEK artificial vertebral bodies can decrease the risk of postoperative internal fixation failure and adjacent segments degeneration.
腰椎整块椎体切除术及内固定可实现脊柱肿瘤切除并重建脊柱稳定性。然而,由于脊柱生物力学不匹配导致的术后内固定失败情况仍不明确。
本研究旨在评估用于整块椎体切除术及内固定的增材制造(AM)多孔聚醚醚酮(PEEK)人工椎体的生物力学特性。
研究设计/设置:比较有限元(FE)研究。
我们使用医用级PEEK细丝和熔融沉积建模(FDM)技术制作多孔人工椎体,并评估实心和多孔植入物的力学性能。创建完整L1-L5的有限元模型,以分析5种用于重建腰椎前柱的手术结构的生物力学特性。使用钛合金网和骨移植(Ti+B)以及具有实心或多孔结构的AM PEEK人工椎体重建腰椎前柱。在生理条件下分析并比较植入物和相邻结构的最大冯·米塞斯应力。
AM PEEK人工椎体降低了人工椎体、相邻椎体和椎间盘上的冯·米塞斯应力。AM多孔PEEK人工椎体(PEEK-500)在人工椎体、相邻椎体和椎间盘上表现出最低的冯·米塞斯应力。
Ti+B增加了相邻椎体上的最大应力,表明其有网片下沉的可能性。此外,PEEK-500对内部植入物和相邻结构的影响最小。这表明用AM多孔PEEK人工椎体重建腰椎前柱可能会降低术后内固定失败和相邻节段退变的风险。
制造的多孔PEEK人工椎体对内部植入物和相邻结构的影响最小。这表明用AM多孔PEEK人工椎体重建腰椎前柱可降低术后内固定失败和相邻节段退变的风险。