Suppr超能文献

ClinGen修订对罕见病诊断的ACMG/AMP变异半自动分类的影响研究。

Study of the impact of ClinGen Revisions on ACMG/AMP variant semi-automatic classification for Rare Diseases diagnosis.

作者信息

Rius Ana, Aguirre Nicolas, Erra Lorenzo, Brunello Franco Gino, Biagioli German, Zaiat Jonathan, Marti Marcelo A

机构信息

Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellón 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina.

Bitgenia, Análisis de Datos Genómicos, Camino Parque Centenario N° 2565 - La Plata, Alicia Moreau de Justo N° 1750 3° H - CABA, Buenos Aires, Argentina.

出版信息

Clin Chim Acta. 2025 Jan 30;566:120065. doi: 10.1016/j.cca.2024.120065. Epub 2024 Nov 29.

Abstract

With the rapid development of massive sequencing technologies, the analysis of genetic variants for clinical diagnosis has exponentially escalated, particularly in the context of Rare Diseases (RDs). Diagnosing them involves identifying the genetic variants responsible for the underlying pathology development. In 2015, the American College of Medical Genetics (ACMG) established a set of recommendations to assess the evidence associated with each variant, aiming to achieve a standardized five tier classification. Over the past 5 years, ClinGen, the NIH-funded Clinical Genome Resource, has reviewed these criteria in order to make variant classification a more reproducible and rigorous process. This paper examines the impact of ClinGen-Rev modifications on variant classification, comparing them with the ACMG-2015 original recommendations. After analyzing sets of genetic variants, extracted from VCFs samples, using both criteria, we observed a change in 8.0 % of the clinical verdicts for these variants. ClinGen-Rev modifications correctly categorized 89.2 % of the curated variants, representing a significant improvement compared to the 65.6 % achieved by ACMG-2015. We also analyzed the modifications impact in a real like clinical setting, showing a significant overall reduction of VUS variants and thus potential reduction in analysis time. Finally, we discuss the underlying reasons for the most relevant changes in terms of specific labels and present their implications on the prioritization and selection process of variants, identifying some recommendations of key significant importance.

摘要

随着大规模测序技术的迅速发展,用于临床诊断的基因变异分析呈指数级增长,尤其是在罕见病(RDs)的背景下。对罕见病进行诊断需要识别导致潜在病理发展的基因变异。2015年,美国医学遗传学学会(ACMG)制定了一套建议,以评估与每个变异相关的证据,旨在实现标准化的五级分类。在过去的5年里,由美国国立卫生研究院资助的临床基因组资源ClinGen对这些标准进行了审查,以使变异分类过程更具可重复性和严谨性。本文研究了ClinGen-Rev修改对变异分类的影响,并将其与ACMG-2015的原始建议进行比较。在使用这两种标准分析从VCF样本中提取的基因变异集后,我们观察到这些变异的临床判定有8.0%发生了变化。ClinGen-Rev修改正确分类了89.2%的经过整理的变异,与ACMG-2015达到的65.6%相比有显著提高。我们还在实际临床环境中分析了这些修改的影响,结果显示意义未明的变异(VUS)总体上显著减少,从而可能缩短分析时间。最后,我们讨论了在特定标签方面最相关变化的潜在原因,并阐述了它们对变异优先级排序和选择过程的影响,确定了一些至关重要的建议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验