Akbari Oryani Mahsa, Tarin Mojtaba, Rahnama Araghi Leila, Rastin Farangis, Javid Hossein, Hashemzadeh Alireza, Karimi-Shahri Mehdi
Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
J Drug Target. 2025 Apr;33(4):473-491. doi: 10.1080/1061186X.2024.2433551. Epub 2024 Dec 2.
Recent advancements in multifunctional nanomaterials for cancer therapy have highlighted porphyrin-based metal-organic frameworks (MOFs) as promising candidates due to their unique properties and versatile applications. This overview focuses on the use of porphyrin-based MOFs for combined photodynamic therapy (PDT) and photothermal therapy (PTT) in cancer treatment. Porphyrin-based MOFs offer high porosity, tuneable structures, and excellent stability, making them ideal for drug delivery and therapeutic applications. The incorporation of porphyrin molecules into the MOF framework enhances light absorption and energy transfer, leading to improved photodynamic and photothermal effects. Additionally, the porosity of MOFs allows for the encapsulation of therapeutic agents, further enhancing efficacy. In PDT, porphyrin-based MOFs generate reactive oxygen species (ROS) upon light activation, destroying cancer cells. The photothermal properties enable the conversion of light energy into heat, resulting in localised hyperthermia and tumour ablation. The combination of PDT and PTT in a single platform offers synergistic effects, leading to better therapeutic outcomes, reduced side effects, and improved selectivity. This dual-modal treatment strategy provides precise spatiotemporal control over the treatment process, paving the way for next-generation therapeutics with enhanced efficacy and reduced side effects. Further research and optimisation are needed for clinical applications.
用于癌症治疗的多功能纳米材料的最新进展突出了基于卟啉的金属有机框架(MOF)因其独特性能和广泛应用而成为有前景的候选材料。本综述聚焦于基于卟啉的MOF在癌症治疗中联合光动力疗法(PDT)和光热疗法(PTT)的应用。基于卟啉的MOF具有高孔隙率、可调节结构和出色的稳定性,使其成为药物递送和治疗应用的理想选择。将卟啉分子掺入MOF框架可增强光吸收和能量转移,从而提高光动力和光热效应。此外,MOF的孔隙率允许封装治疗剂,进一步提高疗效。在PDT中,基于卟啉的MOF在光激活后产生活性氧(ROS),破坏癌细胞。光热特性使光能转化为热量,导致局部热疗和肿瘤消融。在单一平台上结合PDT和PTT具有协同效应,可带来更好的治疗效果、减少副作用并提高选择性。这种双模态治疗策略为治疗过程提供了精确的时空控制,为具有更高疗效和更低副作用的下一代治疗方法铺平了道路。临床应用还需要进一步的研究和优化。
Angew Chem Int Ed Engl. 2021-3-1
J Mater Chem B. 2023-7-5
ACS Appl Mater Interfaces. 2024-9-18
Adv Healthc Mater. 2019-5-8
Cancer Cell Int. 2025-5-25