Borah Parijat, McLeod Natalie, Gupta Nipun Kumar, Yeo Reuben J, Ghosh Tanmay, Aabdin Zainul, Li Lidao, Bhatt Prajna, Liu Yuhan, Palgrave Robert, Lim Yee-Fun, Xu Zhengtao, Handoko Albertus Denny
Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore.
Department of Chemistry, University College London, 20 Gordon St., WC1H 0AJ, London, UK.
Mater Horiz. 2025 Feb 17;12(4):1290-1302. doi: 10.1039/d4mh01153h.
Close integration of metal nanoparticles (NPs) into a metal-organic framework (MOF) can be leveraged to achieve tailored functionality of the resulting composite structure. Here, we demonstrate a "ship-in-a-bottle" approach to produce ≈4.0 nm bismuth (Bi) NPs within a thiol-rich zirconium-based MOF of Zr-DMBD (DMBD = 2,5-dimercapto-1,4-benzenedicarboxylate). We found that the incorporation of Bi NPs into the Zr-DMBD framework relies on the free-standing thiol groups. These thiols have two roles - (i) aid in binding precursor Bi preventing to form the insoluble bismuthyl unit (BiO) and (ii) controlling the growth of Bi NPs. The resulting composite, denoted as BiNP@Zr-DMBD-1, displayed enhanced catalytic activity due to strong interactions between Bi NPs and organic linkers mediated by sulfur, promoting charge transfer from the Bi NP to the MOF matrix. BiNP@Zr-DMBD-1 remained stable after CO electroreduction to formate in a flow setting, with >88% faradaic efficiency at 25 mA cm current density. Additionally, BiNP@Zr-DMBD-1 composite was shown to exhibit photoactivity beyond the typical near-UV absorption range of Bi NPs, where it completely degraded methylene blue dye within 1 h of blue LED irradiation. This work therefore underlines the potential of thiol-rich MOFs in developing new nanomaterials for diverse catalytic applications.
将金属纳米颗粒(NPs)紧密整合到金属有机框架(MOF)中,可用于实现所得复合结构的定制功能。在此,我们展示了一种“瓶中造船”方法,以在富含硫醇的基于锆的Zr-DMBD(DMBD = 2,5-二巯基-1,4-苯二甲酸)MOF中制备约4.0纳米的铋(Bi)纳米颗粒。我们发现,将Bi纳米颗粒掺入Zr-DMBD框架依赖于独立的硫醇基团。这些硫醇具有两个作用——(i)有助于结合前体Bi,防止形成不溶性铋酰单元(BiO);(ii)控制Bi纳米颗粒的生长。所得复合材料,记为BiNP@Zr-DMBD-1,由于Bi纳米颗粒与由硫介导的有机连接体之间的强相互作用,显示出增强的催化活性,促进了电荷从Bi纳米颗粒转移到MOF基质。在流动设置下将CO电还原为甲酸盐后,BiNP@Zr-DMBD-1保持稳定,在25 mA cm电流密度下法拉第效率>88%。此外,BiNP@Zr-DMBD-1复合材料被证明在Bi纳米颗粒典型的近紫外吸收范围之外表现出光活性,在蓝色LED照射1小时内它完全降解了亚甲基蓝染料。因此,这项工作强调了富含硫醇的MOF在开发用于各种催化应用的新型纳米材料方面的潜力。