Davis Jack V, Marrs Frank W, Cawkwell Marc J, Manner Virginia W
High Explosives Science and Technology, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.
Computer, Computational and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.
Chem Mater. 2024 Nov 7;36(22):11109-11118. doi: 10.1021/acs.chemmater.4c01978. eCollection 2024 Nov 26.
The rate of discovery of new explosives with superior energy density and performance has largely stalled. Rapid property prediction through machine learning has the potential to accelerate the discovery of new molecules by screening of large numbers of molecules before they are ever synthesized. To support this goal, we assembled a 21,000-molecule database of experimentally synthesized molecules containing energetic functional groups. Using a combination of experimental density measurements and high throughput electronic structure and atomistic calculations, we calculated detonation velocities and pressures for all 21,000 compounds. Using these values, we trained machine learning models for the prediction of density, detonation velocity and detonation pressure. Notably, our model for crystal density surpassed the accuracy of all current models and decreased the root-mean square error (RMSE) of the previous best model by 20%. This improvement in model performance relative to past works is attributed to our handling of chiral-specified Simplified Molecular-Input Line-Entry System (SMILES) strings and introduction of a new molecular descriptor, MolDensity. To elucidate descriptor importance, we evaluated interpretable descriptors in terms of importance and compared the accuracy of a statistics-driven machine learning model against a model comprised of descriptors typically assumed to control material density. The inexpensive, yet highly accurate predictions from our models should enable creation of future artificial intelligence (AI) models that are able to screen large numbers (>10) of compounds to find the highest performing compounds in terms of crystal density, detonation velocity and detonation pressure.
具有更高能量密度和性能的新型炸药的发现速度已基本停滞。通过机器学习进行快速性能预测,有潜力在大量分子合成之前进行筛选,从而加速新分子的发现。为实现这一目标,我们收集了一个包含21000个含有高能官能团的实验合成分子的数据库。结合实验密度测量以及高通量电子结构和原子计算,我们计算了所有21000种化合物的爆速和爆压。利用这些值,我们训练了用于预测密度、爆速和爆压的机器学习模型。值得注意的是,我们的晶体密度模型超越了所有现有模型的精度,并且将此前最佳模型的均方根误差(RMSE)降低了20%。相对于以往工作,模型性能的这种提升归因于我们对手性特定的简化分子输入线性条目系统(SMILES)字符串的处理以及新分子描述符MolDensity的引入。为了阐明描述符的重要性,我们根据重要性评估了可解释的描述符,并将统计驱动的机器学习模型的准确性与由通常假定控制材料密度的描述符组成的模型进行了比较。我们模型所做的低成本但高精度的预测,应该能够创建未来的人工智能(AI)模型,这些模型能够筛选大量(>10)化合物,以找到在晶体密度、爆速和爆压方面性能最佳的化合物。