Kotsiaros S, Connerney J E P, Saur J, Kokkalis A, Herceg M, Martos Y M, Schlegel S, Jørgensen J L, Bolton S J
Aurora Technology BV for ESA - European Space Agency European Space Astronomy Centre (ESA/ESAC) Villanueva de La Cañada Spain.
DTU Space Technical University of Denmark (DTU) Kongens Lyngby Denmark.
J Geophys Res Space Phys. 2024 Dec;129(12):e2024JA032591. doi: 10.1029/2024JA032591. Epub 2024 Nov 27.
Juno's highly elliptical polar orbits provide unprecedented in-situ observations of the electrodynamic interaction between Jupiter and its volcanic moon Io. These observations occur in regions never sampled before both near Io's orbit and near Jupiter's ionosphere and at distances between the two. Magnetic field data obtained during multiple traversals of magnetic field lines mapping to Io's orbit reveal remarkably rich and complex magnetic signatures near flux tubes connected to Io's orbital position. Here we present a methodology to model the distribution of currents along Io's flux tube (IFT) and Alfvén wings in such a way as to match the magnetic field signature observed during Juno's traversals of the IFT and Alfvén wings downstream of Io. We obtain the location, size and morphology of the current-carrying region as well as the distribution of currents within the IFT and Alfvén wings. The observed field-aligned currents exhibit strong filamentation, with upward and downward currents splitting into secondary cells rather than forming uniform structures. Additionally, there is a strong correlation between total field-aligned current intensity, particle energy flux, and Poynting flux, indicating efficient energy transfer and coupling in the Jupiter-Io system. Using all of Juno's traversals up to perijove (PJ) pass 42, we estimate the strength of the interaction with regards to distance along Io's extended tail, Io's position in the plasma torus and the magnetic field intensity at the footprint in Jupiter's ionosphere, illuminating the interaction of Jovian magnetospheric plasma with Io and setting important constraints in the Io-Jupiter interaction.
朱诺号高度椭圆的极地轨道提供了对木星与其火山卫星木卫一之间电动力相互作用前所未有的实地观测。这些观测发生在木卫一轨道附近、木星电离层附近以及两者之间距离处以前从未采样过的区域。在多次穿越映射到木卫一轨道的磁力线过程中获得的磁场数据显示,在连接到木卫一轨道位置的通量管附近有非常丰富和复杂的磁特征。在这里,我们提出一种方法来模拟沿着木卫一通量管(IFT)和阿尔文翼的电流分布,以便与朱诺号穿越木卫一的IFT和木卫一下游的阿尔文翼期间观测到的磁场特征相匹配。我们获得了载流区域的位置、大小和形态,以及IFT和阿尔文翼内的电流分布。观测到的场向电流表现出强烈的丝状结构,向上和向下的电流分裂成次级单元,而不是形成均匀结构。此外,总场向电流强度、粒子能量通量和坡印廷通量之间存在很强的相关性,表明在木星 - 木卫一系统中存在有效的能量转移和耦合。利用朱诺号直到近木点(PJ)第42次飞越的所有穿越数据,我们估计了沿着木卫一延伸尾部的距离、木卫一在等离子体环中的位置以及木星电离层中足迹处的磁场强度方面的相互作用强度,阐明了木星磁层等离子体与木卫一的相互作用,并为木卫一 - 木星相互作用设定了重要限制。