Suppr超能文献

IGAMT:具有异质性和不规则性的隐私保护电子健康记录合成

IGAMT: Privacy-Preserving Electronic Health Record Synthesization with Heterogeneity and Irregularity.

作者信息

Wang Wenjie, Tang Pengfei, Lou Jian, Shao Yuanming, Waller Lance, Ko Yi-An, Xiong Li

机构信息

ShanghaiTech University.

Emory University.

出版信息

Proc AAAI Conf Artif Intell. 2024;38(14):15634-15643. doi: 10.1609/aaai.v38i14.29491. Epub 2024 Mar 24.

Abstract

Utilizing electronic health records (EHR) for machine learning-driven clinical research has great potential to enhance outcome predictions and treatment personalization. Nonetheless, due to privacy and security concerns, the secondary use of EHR data is regulated, constraining researchers' access to EHR data. Generating synthetic EHR data with deep learning methods is a viable and promising approach to mitigate privacy concerns, offering not only a supplementary resource for downstream applications but also sidestepping the privacy risks associated with real patient data. While prior efforts have concentrated on EHR data synthesis, significant challenges persist: addressing the heterogeneity of features including temporal and non-temporal features, structurally missing values, and irregularity of the temporal measures, and ensuring rigorous privacy of the real data used for model training. Existing works in this domain only focused on solving one or two aforementioned challenges. In this work, we propose , an innovative framework to generate privacy-preserved synthetic EHR data that not only maintains high quality with heterogeneous features, missing values, and irregular measures but also achieves differential privacy with enhanced privacy-utility trade-off. Extensive experiments prove that significantly outperforms baseline and state-of-the-art models in terms of resemblance to real data and performance of downstream applications. Ablation studies also prove the effectiveness of the techniques applied in .

摘要

利用电子健康记录(EHR)进行机器学习驱动的临床研究在增强结果预测和治疗个性化方面具有巨大潜力。尽管如此,由于隐私和安全问题,EHR数据的二次使用受到监管,限制了研究人员对EHR数据的访问。使用深度学习方法生成合成EHR数据是一种可行且有前景的方法,可以减轻隐私问题,不仅为下游应用提供补充资源,还能规避与真实患者数据相关的隐私风险。虽然先前的努力集中在EHR数据合成上,但重大挑战仍然存在:解决包括时间和非时间特征、结构缺失值以及时间度量不规则性在内的特征异质性问题,并确保用于模型训练的真实数据的严格隐私性。该领域的现有工作仅专注于解决上述一两个挑战。在这项工作中,我们提出了一个创新框架,用于生成隐私保护的合成EHR数据,该框架不仅能保持具有异质性特征、缺失值和不规则度量的高质量数据,还能在增强隐私 - 效用权衡的情况下实现差分隐私。大量实验证明,在与真实数据的相似性和下游应用的性能方面,该框架显著优于基线模型和现有最先进模型。消融研究也证明了该框架中应用的技术的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9511/11606572/0fcf7a61b020/nihms-2037249-f0001.jpg

相似文献

本文引用的文献

2
Privacy-Preserving Generative Deep Neural Networks Support Clinical Data Sharing.隐私保护生成式深度神经网络支持临床数据共享。
Circ Cardiovasc Qual Outcomes. 2019 Jul;12(7):e005122. doi: 10.1161/CIRCOUTCOMES.118.005122. Epub 2019 Jul 9.
5
Reducing the dimensionality of data with neural networks.使用神经网络降低数据维度。
Science. 2006 Jul 28;313(5786):504-7. doi: 10.1126/science.1127647.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验