Suppr超能文献

使用改进的生成对抗网络合成电子健康记录。

Synthesizing electronic health records using improved generative adversarial networks.

机构信息

Social Networks and Human-Centered Computing, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei, Taiwan.

Department of Computer Science, National Chengchi University, Taipei, Taiwan.

出版信息

J Am Med Inform Assoc. 2019 Mar 1;26(3):228-241. doi: 10.1093/jamia/ocy142.

Abstract

OBJECTIVE

The aim of this study was to generate synthetic electronic health records (EHRs). The generated EHR data will be more realistic than those generated using the existing medical Generative Adversarial Network (medGAN) method.

MATERIALS AND METHODS

We modified medGAN to obtain two synthetic data generation models-designated as medical Wasserstein GAN with gradient penalty (medWGAN) and medical boundary-seeking GAN (medBGAN)-and compared the results obtained using the three models. We used 2 databases: MIMIC-III and National Health Insurance Research Database (NHIRD), Taiwan. First, we trained the models and generated synthetic EHRs by using these three 3 models. We then analyzed and compared the models' performance by using a few statistical methods (Kolmogorov-Smirnov test, dimension-wise probability for binary data, and dimension-wise average count for count data) and 2 machine learning tasks (association rule mining and prediction).

RESULTS

We conducted a comprehensive analysis and found our models were adequately efficient for generating synthetic EHR data. The proposed models outperformed medGAN in all cases, and among the 3 models, boundary-seeking GAN (medBGAN) performed the best.

DISCUSSION

To generate realistic synthetic EHR data, the proposed models will be effective in the medical industry and related research from the viewpoint of providing better services. Moreover, they will eliminate barriers including limited access to EHR data and thus accelerate research on medical informatics.

CONCLUSION

The proposed models can adequately learn the data distribution of real EHRs and efficiently generate realistic synthetic EHRs. The results show the superiority of our models over the existing model.

摘要

目的

本研究旨在生成合成电子健康记录(EHR)。生成的 EHR 数据将比使用现有医学生成对抗网络(medGAN)方法生成的数据更加真实。

材料和方法

我们修改了 medGAN 以获得两种合成数据生成模型,分别命名为带梯度惩罚的医学 Wasserstein GAN(medWGAN)和医学边界搜索 GAN(medBGAN),并比较了这三种模型的结果。我们使用了两个数据库:MIMIC-III 和台湾国民健康保险研究数据库(NHIRD)。首先,我们训练模型并使用这三种模型生成合成 EHR。然后,我们使用几种统计方法(Kolmogorov-Smirnov 检验、二值数据的维概率和计数数据的维平均计数)和两种机器学习任务(关联规则挖掘和预测)来分析和比较模型的性能。

结果

我们进行了全面的分析,发现我们的模型在生成合成 EHR 数据方面效率足够高。在所分析的所有情况下,所提出的模型均优于 medGAN,而在这三种模型中,边界搜索 GAN(medBGAN)的性能最佳。

讨论

为了生成真实的合成 EHR 数据,从提供更好服务的角度来看,所提出的模型将在医疗行业和相关研究中非常有效。此外,它们将消除包括对 EHR 数据的有限访问在内的障碍,从而加速医学信息学的研究。

结论

所提出的模型可以充分学习真实 EHR 的数据分布,并有效地生成真实的合成 EHR。结果表明,我们的模型优于现有的模型。

相似文献

7
Anonymization Through Data Synthesis Using Generative Adversarial Networks (ADS-GAN).基于生成对抗网络的数据合成匿名化(ADS-GAN)。
IEEE J Biomed Health Inform. 2020 Aug;24(8):2378-2388. doi: 10.1109/JBHI.2020.2980262. Epub 2020 Mar 12.
8
MedGAN: An adaptive GAN approach for medical image generation.MedGAN:一种用于医学图像生成的自适应 GAN 方法。
Comput Biol Med. 2023 Sep;163:107119. doi: 10.1016/j.compbiomed.2023.107119. Epub 2023 Jun 12.

引用本文的文献

5
Generative artificial intelligence in diabetes healthcare.糖尿病医疗保健中的生成式人工智能。
iScience. 2025 Jul 5;28(8):113051. doi: 10.1016/j.isci.2025.113051. eCollection 2025 Aug 15.

本文引用的文献

1
StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks.StackGAN++:基于堆叠生成对抗网络的逼真图像合成
IEEE Trans Pattern Anal Mach Intell. 2019 Aug;41(8):1947-1962. doi: 10.1109/TPAMI.2018.2856256. Epub 2018 Jul 16.
6
Toward personalizing treatment for depression: predicting diagnosis and severity.迈向抑郁症的个性化治疗:预测诊断与严重程度。
J Am Med Inform Assoc. 2014 Nov-Dec;21(6):1069-75. doi: 10.1136/amiajnl-2014-002733. Epub 2014 Jul 2.
8
A systematic review of re-identification attacks on health data.对健康数据再识别攻击的系统综述。
PLoS One. 2011;6(12):e28071. doi: 10.1371/journal.pone.0028071. Epub 2011 Dec 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验