Suppr超能文献

推进二维材料预测:使用原子线图神经网络进行卓越的功函数估计。

Advancing 2D material predictions: superior work function estimation with atomistic line graph neural networks.

作者信息

Sibi Harikrishnan, Biju Jovita, Chowdhury Chandra

机构信息

School of Mathematics, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM) Maruthamala P. O Thiruvananthapuram 695 551 India.

School of Data Science, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM) Maruthamala P. O Thiruvananthapuram 695 551 India.

出版信息

RSC Adv. 2024 Nov 29;14(51):38070-38078. doi: 10.1039/d4ra07703b. eCollection 2024 Nov 25.

Abstract

Despite the increased research and scholarly attention on two-dimensional (2D) materials, there is still a limited range of practical applications for these materials. This is because it is challenging to acquire properties that are usually obtained by experiments or first-principles predictions, which require substantial time and resources. Descriptor-based machine learning models frequently require further density functional theory (DFT) calculations to enhance prediction accuracy due to the intricate nature of the systems and the constraints of the descriptors employed. Unlike these models, research has demonstrated that graph neural networks (GNNs), which solely rely on the systems' coordinates for model description, greatly improve the ability to represent and simulate atomistic materials. Within this framework, we employed the Atomistic Line Graph Neural Network (ALIGNN) to predict the work function, a crucial material characteristic, for a diverse array of 2D materials sourced from the Computational 2D Materials Database (C2DB). We found that the ALIGNN algorithm shows superior performance compared to standard feature-based approaches. It attained a mean absolute error of 0.20 eV, whereas random forest models achieved 0.27 eV.

摘要

尽管对二维(2D)材料的研究和学术关注有所增加,但这些材料的实际应用范围仍然有限。这是因为获取通常通过实验或第一性原理预测获得的特性具有挑战性,而这需要大量的时间和资源。由于系统的复杂性和所采用描述符的限制,基于描述符的机器学习模型通常需要进一步的密度泛函理论(DFT)计算来提高预测准确性。与这些模型不同,研究表明,仅依赖系统坐标进行模型描述的图神经网络(GNN)极大地提高了表示和模拟原子材料的能力。在此框架内,我们使用原子线图神经网络(ALIGNN)来预测从计算二维材料数据库(C2DB)获取的各种二维材料的功函数,这是一种关键的材料特性。我们发现,与基于标准特征的方法相比,ALIGNN算法表现出卓越的性能。它的平均绝对误差为0.20电子伏特,而随机森林模型的平均绝对误差为0.27电子伏特。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/585b/11605676/650ff7d75d4b/d4ra07703b-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验