Suppr超能文献

介绍一种新型的亚毫米级肺部CT图像配准误差定量工具。

Introducing a novel sub-millimeter lung CT image registration error quantitation tool.

作者信息

Boyle Peter, Naumann Louise, Lauria Michael, Miller Claudia, Andosca Ryan, Savjani Ricky, O'Connell Dylan, Moghanaki Drew, Barjaktarevic Igor, Goldin Jonathan, Low Daniel A

机构信息

Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, California, USA.

Department of Pulmonology, University of California, Los Angeles, Los Angeles, California, USA.

出版信息

Med Phys. 2025 Mar;52(3):1601-1614. doi: 10.1002/mp.17552. Epub 2024 Dec 2.

Abstract

BACKGROUND

Lung computed tomography (CT) scan image registration is being used for lung function analysis such as ventilation. Given the high sensitivity of functional analyses to image registration errors, an image registration error scoring tool that can measure submillimeter image registration errors is needed.

PURPOSE

To propose an image registration error scoring tool, termed λ, whose spatial sensitivity can be used to quantify image registration errors in steep image gradient regions under realistic noise conditions.

METHODS

λ compares two images, termed reference and evaluated. The HU and distance scales of both images are normalized by user-selected scaling criteria. For each voxel in the reference image, the 4D Euclidian distances between the reference voxel and the nearby evaluated voxels are calculated, and the minimum of these distances is . We tested in simulated individual blood vessels comprised of 1, 3, and 5 mm diameter cylinders in 1 × 1 × 1 mm voxel images, which were blurred to simulate CT scanner intrinsic resolution and volume averaging. We placed the simulated vessels in a homogeneous background simulating parenchymal tissue density and injected 20, 40, and 60 HU standard deviation Gaussian noise. We used isotropic Gaussian filters with 0.5, 1.0, and 1.5 mm standard deviation kernels to smooth the simulated images. We assessed using reference-evaluated vessel shifts of -1.0 to 1.0 mm in 0.05 mm steps via rigid translational and rotational deformations. We examined whether tracked the translation vector via its internal spatial component. We restricted to voxels using the angle, termed , between the vector and the normalized spatial-distance axes, terming the results the restricted- , , where was hypothesized to be a proxy for image gradient. We determined whether was coincident with the image gradient by examining if the voxels with tracked the evaluated vessels. We used the 95 percentile of , , to determine spatial sensitivity, which we took as a conservative estimate of registration error, by fitting to a modified absolute-value function for each tested rigid translation, noise level, smoothing kernel, and vessel radius combination. We demonstrated the use of on a clinical example consisting of a set of 25 deformably registered free-breathing thoracic CT scans. We visually compared the and results against the HU differences between each clinical image pair.

RESULTS

We found θ to be coincident with the image gradient. We found that 's spatial component tracked the vessel shifts. We determined the spatial sensitivity limit of to be < 0.2 mm. The noise level and smoothing kernel influenced sensitivity, worsening with increasing noise, and improving with increasing smoothing. For the clinical images, we observed to qualitatively match the absolute difference of intensity in the image pairs and to restrict itself to high gradient regions or regions of visually apparent errors.

CONCLUSION

detected sub-millimeter positioning errors between simulated vessels in the presence of typical CT noise. The noise magnitude and choice of noise smoothing kernel were inversely related to sensitivity, implying that study-specific tuning of the pre-smoothing kernel may be required. The demonstrated ability in geometric tests of to detect subvoxel DIR errors warrants further evaluation and testing.

摘要

背景

肺部计算机断层扫描(CT)图像配准正被用于诸如通气等肺功能分析。鉴于功能分析对图像配准误差的高度敏感性,需要一种能够测量亚毫米级图像配准误差的图像配准误差评分工具。

目的

提出一种图像配准误差评分工具,称为λ,其空间敏感性可用于在实际噪声条件下量化陡峭图像梯度区域中的图像配准误差。

方法

λ比较两幅图像,分别称为参考图像和评估图像。两幅图像的HU和距离尺度通过用户选择的缩放标准进行归一化。对于参考图像中的每个体素,计算参考体素与附近评估体素之间的4D欧几里得距离,这些距离中的最小值即为λ。我们在由直径为1、3和5毫米的圆柱体组成的模拟单个血管中进行了测试,这些血管位于1×1×1毫米体素图像中,图像进行了模糊处理以模拟CT扫描仪的固有分辨率和体积平均效应。我们将模拟血管放置在模拟实质组织密度的均匀背景中,并注入标准差为20、40和60 HU的高斯噪声。我们使用标准差内核为0.5、1.0和1.5毫米的各向同性高斯滤波器对模拟图像进行平滑处理。我们通过刚性平移和旋转变形,以0.05毫米的步长评估参考图像与评估图像之间血管偏移量在-1.0至1.0毫米范围内时的λ。我们通过λ的内部空间分量检查其是否跟踪平移向量。我们使用向量与归一化空间距离轴之间的夹角θ来限制λ到体素,将结果称为受限λ,即λθ,其中θ被假设为图像梯度的代理。通过检查具有λθ的体素是否跟踪评估血管,我们确定λθ是否与图像梯度一致。我们使用λθ的第95百分位数来确定空间敏感性,通过将λθ拟合到每个测试的刚性平移、噪声水平、平滑内核和血管半径组合的修正绝对值函数,将其作为配准误差的保守估计。我们在一个由25组可变形配准的自由呼吸胸部CT扫描组成的临床示例中展示了λ的应用。我们在视觉上比较了λ和λθ的结果与每个临床图像对之间的HU差异。

结果

我们发现θ与图像梯度一致。我们发现λ的空间分量跟踪了血管偏移。我们确定λ的空间敏感性极限小于0.2毫米。噪声水平和平滑内核影响λ的敏感性,随着噪声增加而变差,随着平滑增加而改善。对于临床图像,我们观察到λ在定性上与图像对中强度的绝对差异相匹配,并且λθ局限于高梯度区域或视觉上明显错误的区域。

结论

在存在典型CT噪声的情况下,λ检测到了模拟血管之间的亚毫米定位误差。噪声幅度和平滑内核的选择与λ的敏感性呈负相关,这意味着可能需要针对特定研究对预平滑内核进行调整。λ在几何测试中检测亚体素DIR误差的能力值得进一步评估和测试。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验