Suppr超能文献

合成气转化过程中金属氧化物表面结构依赖的氢活化作用。

Surface Structure Dependent Activation of Hydrogen over Metal Oxides during Syngas Conversion.

作者信息

Bai Bing, Ye Yihan, Jiao Feng, Xiao Jianping, Pan Yang, Cai Zehua, Chen Mingshu, Pan Xiulian, Bao Xinhe

机构信息

State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.

University of Chinese Academy of Sciences, Beijing, 100049, China.

出版信息

J Am Chem Soc. 2024 Dec 18;146(50):34909-34915. doi: 10.1021/jacs.4c14395. Epub 2024 Dec 2.

Abstract

Despite the extensive studies on the adsorption and activation of hydrogen over metal oxides, it remains a challenge to investigate the structure-dependent activation of hydrogen and its selectivity mechanism in hydrogenation reactions. Herein we take spinel and solid solution MnGaO with a similar bulk chemical composition and study the hydrogen activation mechanism and reactivity in syngas conversion. The results show that MnGaO-Solid Solution (MnGaO-SS) is a typical Mn-doped hexagonal close-packed (HCP) GaO with a Ga-rich surface. Upon exposure to hydrogen, Ga-H and O-H species are simultaneously generated. Ga-H species are highly active but unselective in CO activation, forming CHO, and ethylene hydrogenation, forming ethane. In contrast, MnGaO-Spinel is a face-centered-cubic (FCC) spinel phase featuring a Mn-rich surface, thus effectively suppressing the formation of Ga-H species. Interestingly, only part of the O-H species are active for CO activation while the O-H species are inert for olefin hydrogenation over MnGaO-Spinel. Therefore, MnGaO-Spinel exhibits a higher activity and higher light-olefin selectivity than MnGaO-SS in combination with SAPO-18 during syngas conversion. These fundamental understandings are essential to guide the design and further optimization of metal oxide catalysts for selectivity control in hydrogenations.

摘要

尽管对金属氧化物上氢的吸附和活化进行了广泛研究,但研究氢化反应中氢的结构依赖性活化及其选择性机制仍然是一项挑战。在此,我们采用具有相似体相化学成分的尖晶石和固溶体MnGaO,研究合成气转化中的氢活化机制和反应活性。结果表明,MnGaO固溶体(MnGaO-SS)是一种典型的Mn掺杂六方密堆积(HCP)GaO,表面富Ga。暴露于氢气中时,会同时生成Ga-H和O-H物种。Ga-H物种活性很高,但在CO活化中无选择性,生成CHO,在乙烯加氢中生成乙烷。相比之下,MnGaO尖晶石是一种面心立方(FCC)尖晶石相,表面富Mn,从而有效抑制了Ga-H物种的形成。有趣的是,在MnGaO尖晶石上,只有部分O-H物种对CO活化有活性,而O-H物种对烯烃加氢是惰性的。因此,在合成气转化过程中,与SAPO-18结合时,MnGaO尖晶石比MnGaO-SS表现出更高的活性和更高的轻烯烃选择性。这些基本认识对于指导用于氢化反应选择性控制的金属氧化物催化剂的设计和进一步优化至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96f4/11669165/b4e965f94458/ja4c14395_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验