Zhang Ziyi, Gao Lanmei, Zheng Houbing, Zhong Yi, Li Gaozheng, Ye Zhaoting, Sun Qi, Wang Biao, Weng Zuquan
College of Computer and Data Science/College of Software, Fuzhou University, Fujian, China.
College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China.
Bioprocess Biosyst Eng. 2025 Feb;48(2):301-315. doi: 10.1007/s00449-024-03110-4. Epub 2024 Dec 2.
Fast and accurate detection of infectious bacteria in wounds is crucial for effective clinical treatment. However, traditional methods take over 24 h to yield results, which is inadequate for urgent clinical needs. Here, we introduce a deep learning-driven framework that detects and classifies four bacteria commonly found in wounds: Acinetobacter baumannii (AB), Escherichia coli (EC), Pseudomonas aeruginosa (PA), and Staphylococcus aureus (SA). This framework leverages the pretrained ResNet50 deep learning architecture, trained on manually collected periodic bacterial colony-growth images from high-content imaging. In in vitro samples, our method achieves a detection rate of over 95% for early colonies cultured for 8 h, reducing detection time by more than 12 h compared to traditional Environmental Protection Agency (EPA)-approved methods. For colony classification, it identifies AB, EC, PA, and SA colonies with accuracies of 96%, 97%, 96%, and 98%, respectively. For mixed bacterial samples, it identifies colonies with 95% accuracy and classifies them with 93% precision. In mouse wound samples, the method identifies over 90% of developing bacterial colonies and classifies colony types with an average accuracy of over 94%. These results highlight the framework's potential for improving the clinical treatment of wound infections. Besides, the framework provides the detection results with key feature visualization, which enhance the prediction credibility for users. To summarize, the proposed framework enables high-throughput identification, significantly reducing detection time and providing a cost-effective tool for early bacterial detection.
快速准确地检测伤口中的感染细菌对于有效的临床治疗至关重要。然而,传统方法需要超过24小时才能得出结果,这无法满足紧急的临床需求。在此,我们引入了一个深度学习驱动的框架,该框架可检测并分类伤口中常见的四种细菌:鲍曼不动杆菌(AB)、大肠杆菌(EC)、铜绿假单胞菌(PA)和金黄色葡萄球菌(SA)。该框架利用预训练的ResNet50深度学习架构,基于从高内涵成像手动收集的周期性细菌菌落生长图像进行训练。在体外样本中,我们的方法对于培养8小时的早期菌落实现了超过95%的检测率,与传统的美国环境保护局(EPA)批准的方法相比,检测时间减少了超过12小时。对于菌落分类,它识别AB、EC、PA和SA菌落的准确率分别为96%、97%、96%和98%。对于混合细菌样本,它识别菌落的准确率为95%,分类的精确率为93%。在小鼠伤口样本中,该方法识别出超过90%正在形成的细菌菌落,并以超过94%的平均准确率对菌落类型进行分类。这些结果凸显了该框架在改善伤口感染临床治疗方面的潜力。此外,该框架通过关键特征可视化提供检测结果,增强了用户的预测可信度。总之,所提出的框架能够实现高通量识别,显著减少检测时间,并为早期细菌检测提供一种经济高效的工具。