Ma Pingli, Li Chen, Rahaman Md Mamunur, Yao Yudong, Zhang Jiawei, Zou Shuojia, Zhao Xin, Grzegorzek Marcin
Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.
Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, NJ USA.
Artif Intell Rev. 2023;56(2):1627-1698. doi: 10.1007/s10462-022-10209-1. Epub 2022 Jun 7.
Microorganisms play a vital role in human life. Therefore, microorganism detection is of great significance to human beings. However, the traditional manual microscopic detection methods have the disadvantages of long detection cycle, low detection accuracy in large orders, and great difficulty in detecting uncommon microorganisms. Therefore, it is meaningful to apply computer image analysis technology to the field of microorganism detection. Computer image analysis can realize high-precision and high-efficiency detection of microorganisms. In this review, first,we analyse the existing microorganism detection methods in chronological order, from traditional image processing and traditional machine learning to deep learning methods. Then, we analyze and summarize these existing methods and introduce some potential methods, including visual transformers. In the end, the future development direction and challenges of microorganism detection are discussed. In general, we have summarized 142 related technical papers from 1985 to the present. This review will help researchers have a more comprehensive understanding of the development process, research status, and future trends in the field of microorganism detection and provide a reference for researchers in other fields.
微生物在人类生活中扮演着至关重要的角色。因此,微生物检测对人类具有重大意义。然而,传统的手工显微镜检测方法存在检测周期长、大批量检测时准确率低以及检测罕见微生物难度大等缺点。因此,将计算机图像分析技术应用于微生物检测领域具有重要意义。计算机图像分析能够实现对微生物的高精度、高效率检测。在本综述中,首先,我们按时间顺序分析现有的微生物检测方法,从传统图像处理、传统机器学习到深度学习方法。然后,我们对这些现有方法进行分析和总结,并介绍一些潜在的方法,包括视觉Transformer。最后,讨论了微生物检测的未来发展方向和挑战。总体而言,我们总结了从1985年至今的142篇相关技术论文。本综述将有助于研究人员更全面地了解微生物检测领域的发展历程、研究现状和未来趋势,并为其他领域的研究人员提供参考。