Lin Yi-Chan J, Evans David H, Noyce Ryan S
Department of Medical Microbiology & Immunology, and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada.
Methods Mol Biol. 2025;2860:97-114. doi: 10.1007/978-1-0716-4160-6_7.
The low-frequency natural recombination that is detected in poxvirus-infected cells has long been used to genetically modify poxviruses. Such recombinant poxviruses have found many applications as vaccines for preventing infectious diseases and as experimental cancer therapeutics. Unfortunately, these methods are time consuming, can leave behind "scars" or selectable markers, and many months of work may be required to generate plaque-purified recombinants bearing multiple virus gene substitutions, deletions, and/or inserted transgenes. Over the last decade, several reports have described how CRISPR/Cas9 technologies can be used to better facilitate genetic manipulation of vaccinia virus (VACV). These protocols use Cas9/gRNA complexes to introduce double-stranded breaks into specific sites in virus genomic DNA either in vivo or in vitro. Recombination-repair reactions are then employed to repair the breaks using transfected DNAs encoding the required homologies and desired mutation(s). Here we describe a method where we combine CRISPR/Cas9 genome editing in vitro, followed by Leporipoxvirus-catalyzed repair and reactivation of the cut VACV DNA using repair fragments provided in trans. This method optimizes several steps in the preparation of the CRISPR/Cas9-cut VACV DNA and can be used to introduce mutations at multiple sites without requiring selectable markers. It also provides some guidance regarding how the position of the CRISPR/Cas9-cuts can affect co-conversion of flanking markers embedded in the repair fragment. The method allows researchers to quickly generate recombinant VACV bearing multiple genetic alterations and using only a single round of reactivation and plating.
在痘病毒感染的细胞中检测到的低频自然重组长期以来一直被用于对痘病毒进行基因改造。这种重组痘病毒已在预防传染病的疫苗以及实验性癌症治疗等方面有许多应用。不幸的是,这些方法耗时较长,可能会留下“疤痕”或选择标记,并且可能需要数月的工作才能产生携带多个病毒基因替换、缺失和/或插入转基因的空斑纯化重组体。在过去十年中,有几份报告描述了如何使用CRISPR/Cas9技术更好地促进痘苗病毒(VACV)的基因操作。这些方案使用Cas9/gRNA复合物在体内或体外将双链断裂引入病毒基因组DNA的特定位点。然后利用重组修复反应,使用编码所需同源性和所需突变的转染DNA来修复断裂处。在此,我们描述一种方法,即先在体外结合CRISPR/Cas9基因组编辑,然后利用兔痘病毒催化的修复,并使用反式提供的修复片段使切割后的VACV DNA重新激活。该方法优化了CRISPR/Cas9切割的VACV DNA制备过程中的几个步骤,可用于在多个位点引入突变而无需选择标记。它还提供了一些关于CRISPR/Cas9切割位置如何影响修复片段中侧翼标记共转化的指导。该方法使研究人员能够快速产生携带多个基因改变的重组VACV,并且仅需一轮重新激活和平板接种。