Suppr超能文献

择期结肠切除术后30天内主要医学并发症的事件发生时间风险预测模型的开发与内部验证

Development and internal validation of time-to-event risk prediction models for major medical complications within 30 days after elective colectomy.

作者信息

Ke Janny X C, Jen Tim T H, Gao Sihaoyu, Ngo Long, Wu Lang, Flexman Alana M, Schwarz Stephan K W, Brown Carl J, Görges Matthias

机构信息

Department of Anesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada.

Department of Anesthesia, St. Paul's Hospital/Providence Health Care, Vancouver, British Columbia, Canada.

出版信息

PLoS One. 2024 Dec 2;19(12):e0314526. doi: 10.1371/journal.pone.0314526. eCollection 2024.

Abstract

BACKGROUND

Patients undergoing colectomy are at risk of numerous major complications. However, existing binary risk stratification models do not predict when a patient may be at highest risks of each complication. Accurate prediction of the timing of complications facilitates targeted, resource-efficient monitoring. We sought to develop and internally validate Cox proportional hazards models to predict time-to-complication of major complications within 30 days after elective colectomy.

METHODS

We studied a retrospective cohort from the multicentered American College of Surgeons National Surgical Quality Improvement Program procedure-targeted colectomy dataset. Patients aged 18 years or above, who underwent elective colectomy between January 1, 2014 and December 31, 2019 were included. A priori candidate predictors were selected based on variable availability, literature review, and multidisciplinary team consensus. Outcomes were mortality, hospital readmission, myocardial infarction, cerebral vascular events, pneumonia, venous thromboembolism, acute renal failure, and sepsis or septic shock within 30 days after surgery.

RESULTS

The cohort consisted of 132145 patients (mean ± SD age, 61 ± 15 years; 52% females). Complication rates ranged between 0.3% (n = 383) for cardiac arrest and acute renal failure to 5.3% (n = 6986) for bleeding requiring transfusion, with readmission rate of 8.6% (n = 11415). We observed distinct temporal patterns for each complication: the median [quartiles] postoperative day of complication diagnosis ranged from 1 [0, 2] days for bleeding requiring transfusion to 12 [6, 18] days for venous thromboembolism. Models for mortality, myocardial infarction, pneumonia, and renal failure showed good discrimination with a concordance > 0.8, while models for readmission, venous thromboembolism, and sepsis performed poorly with a concordance of 0.6 to 0.7. Models exhibited good calibration but ranges were limited to low probability areas.

CONCLUSIONS

We developed and internally validated time-to-event prediction models for complications after elective colectomy. Once further validated, the models can facilitate tailored monitoring of high risk patients during high risk periods.

TRIAL REGISTRATION

Clinicaltrials.gov (NCT05150548; Principal Investigator: Janny Xue Chen Ke, M.D., M.Sc., F.R.C.P.C.; initial posting: November 25, 2021).

摘要

背景

接受结肠切除术的患者面临多种严重并发症的风险。然而,现有的二元风险分层模型无法预测患者在何时可能面临每种并发症的最高风险。准确预测并发症发生的时间有助于进行有针对性的、资源高效的监测。我们试图开发并在内部验证Cox比例风险模型,以预测择期结肠切除术后30天内主要并发症的发生时间。

方法

我们研究了来自多中心美国外科医师学会国家外科质量改进计划程序针对性结肠切除术数据集的回顾性队列。纳入2014年1月1日至2019年12月31日期间接受择期结肠切除术的18岁及以上患者。根据变量可用性、文献综述和多学科团队共识选择先验候选预测因素。结局指标为术后30天内的死亡率、住院再入院率、心肌梗死、脑血管事件、肺炎、静脉血栓栓塞、急性肾衰竭以及脓毒症或脓毒性休克。

结果

该队列包括132145名患者(平均±标准差年龄,61±15岁;52%为女性)。并发症发生率从心脏骤停和急性肾衰竭的0.3%(n = 383)到需要输血的出血的5.3%(n = 6986)不等,再入院率为8.6%(n = 11415)。我们观察到每种并发症都有不同的时间模式:并发症诊断的术后中位[四分位数]天数从需要输血的出血的1[0, 2]天到静脉血栓栓塞的12[6, 18]天不等。死亡率、心肌梗死、肺炎和肾衰竭的模型显示出良好的区分度,一致性> 0.8,而再入院、静脉血栓栓塞和脓毒症的模型表现较差,一致性为0.6至0.7。模型表现出良好的校准,但范围仅限于低概率区域。

结论

我们开发并在内部验证了择期结肠切除术后并发症的事件发生时间预测模型。一旦进一步验证,这些模型可有助于在高风险期对高危患者进行针对性监测。

试验注册

Clinicaltrials.gov(NCT05150548;主要研究者:Janny Xue Chen Ke,医学博士、理学硕士、加拿大皇家内科医师学会会员;初始发布时间:2021年11月25日)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04f6/11611139/fd23285ec7a3/pone.0314526.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验