Suppr超能文献

SurvBenchmark:使用组学数据和临床数据的生存分析方法的综合基准研究。

SurvBenchmark: comprehensive benchmarking study of survival analysis methods using both omics data and clinical data.

机构信息

School of Mathematics and Statistics, The University of Sydney, Sydney 2006, Australia.

Charles Perkins Centre, The University of Sydney, Sydney 2006, Australia.

出版信息

Gigascience. 2022 Jul 30;11. doi: 10.1093/gigascience/giac071.

Abstract

Survival analysis is a branch of statistics that deals with both the tracking of time and the survival status simultaneously as the dependent response. Current comparisons of survival model performance mostly center on clinical data with classic statistical survival models, with prediction accuracy often serving as the sole metric of model performance. Moreover, survival analysis approaches for censored omics data have not been thoroughly investigated. The common approach is to binarize the survival time and perform a classification analysis. Here, we develop a benchmarking design, SurvBenchmark, that evaluates a diverse collection of survival models for both clinical and omics data sets. SurvBenchmark not only focuses on classical approaches such as the Cox model but also evaluates state-of-the-art machine learning survival models. All approaches were assessed using multiple performance metrics; these include model predictability, stability, flexibility, and computational issues. Our systematic comparison design with 320 comparisons (20 methods over 16 data sets) shows that the performances of survival models vary in practice over real-world data sets and over the choice of the evaluation metric. In particular, we highlight that using multiple performance metrics is critical in providing a balanced assessment of various models. The results in our study will provide practical guidelines for translational scientists and clinicians, as well as define possible areas of investigation in both survival technique and benchmarking strategies.

摘要

生存分析是统计学的一个分支,它同时处理时间追踪和作为依赖响应的生存状态。目前,生存模型性能的比较主要集中在具有经典统计生存模型的临床数据上,预测准确性通常是衡量模型性能的唯一指标。此外,对于受删失的组学数据的生存分析方法尚未得到彻底研究。常见的方法是将生存时间二值化,并进行分类分析。在这里,我们开发了一个基准设计 SurvBenchmark,用于评估临床和组学数据集的各种生存模型。SurvBenchmark 不仅关注经典方法,如 Cox 模型,还评估最先进的机器学习生存模型。所有方法都使用多种性能指标进行评估;这些指标包括模型可预测性、稳定性、灵活性和计算问题。我们使用 320 次比较(16 个数据集上的 20 种方法)的系统比较设计表明,生存模型在实际应用中会根据实际数据集和评估指标的选择而有所不同。特别是,我们强调使用多种性能指标对于对各种模型进行平衡评估至关重要。我们研究的结果将为转化科学家和临床医生提供实际指导,并定义生存技术和基准策略方面的可能研究领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ba6/9338425/fad96b3c0e8a/giac071fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验