John M E, Waterman M R
Biochim Biophys Acta. 1979 Jun 19;578(2):269-80. doi: 10.1016/0005-2795(79)90157-0.
The effect of pH and inositol hexaphosphate on the electron spin resonance spectra of the alpha-hemes (g = 6.0) and the beta-hemes (g = 6.7) has been measured in methemoglobin M Milwaukee and compared with that of methemoglobin A (g = 6.0). The beta-hemes are found to be comparatively insensitive to both effectors while the alpha-hemes behave in a manner similar to the heme groups of methemoglobin A. Binding of inositol hexaphosphate enhances the high spin ESR signal of the alpha-hemes in both methemoglobins. Comparison of the optical properties of methemoglobins A and M Milwaukee over the pH range from 5.0 to 8.1 shows that inositol hexaphosphate has a differential effect on the subunit types in these two methemoglobins. At low pH the spectral changes observed upon inositol hexaphosphate binding arise primarily from the beta-hemes, while at neutral and alkaline pH these changes arise from both subunit types. The beta-heme spectral changes appear to be pH independent while those arising from the alpha-hemes are strongly pH dependent. It is concluded that it is the hydroxymet form of the alpha-hemes which undergoes spectral change upon inositol hexaphosphate binding to the beta-subunits. In methemoglobin A the spin state and paramagnetic susceptibility increase only in the neutral and alkaline pH ranges upon inositol hexaphosphate binding (Gupta, R.K. and Mildvan, R.S. (1975) J. Biol. Chem. 250, 246; Perutz, M.F., Sanders, J.K.M., Chenery, D.H., Noble, R.W., Penelly, R.R., Fung, L.W.-M., Ho, C., Giannini, I., Porschke, D. and Winkler, H. (1978) Biochemistry 17, 3640). Therefore the hydroxymet form of the alpha-hemes which is responsible for the observed spectral changes must also be responsible for these increases in the magnetic properties of methemoglobin A. Inositol hexaphosphate can bind to methemoglobin at alkaline pH if the beta-hemes are in the high spin form.
已在高铁血红蛋白M密尔沃基中测量了pH值和肌醇六磷酸对α-血红素(g = 6.0)和β-血红素(g = 6.7)电子自旋共振光谱的影响,并与高铁血红蛋白A(g = 6.0)进行了比较。发现β-血红素对这两种效应物相对不敏感,而α-血红素的行为方式与高铁血红蛋白A的血红素基团相似。肌醇六磷酸的结合增强了两种高铁血红蛋白中α-血红素的高自旋ESR信号。对pH值范围为5.0至8.1的高铁血红蛋白A和M密尔沃基的光学性质进行比较表明,肌醇六磷酸对这两种高铁血红蛋白中的亚基类型有不同的影响。在低pH值下,肌醇六磷酸结合后观察到的光谱变化主要源于β-血红素,而在中性和碱性pH值下,这些变化源于两种亚基类型。β-血红素的光谱变化似乎与pH值无关,而α-血红素引起的光谱变化则强烈依赖于pH值。得出的结论是,正是α-血红素的羟基高铁形式在肌醇六磷酸与β-亚基结合时发生光谱变化。在高铁血红蛋白A中,仅在中性和碱性pH值范围内,肌醇六磷酸结合后自旋状态和顺磁磁化率才会增加(古普塔,R.K.和米尔德万,R.S.(1975年)《生物化学杂志》250, 246;佩鲁茨,M.F.,桑德斯,J.K.M.,切纳里,D.H.,诺布尔,R.W.,彭内利,R.R.,冯,L.W.-M.,何,C.,詹尼尼,I.,波施克,D.和温克勒,H.(1978年)《生物化学》17, 3640)。因此,导致观察到的光谱变化的α-血红素的羟基高铁形式也必定是导致高铁血红蛋白A磁性性质增加的原因。如果β-血红素处于高自旋形式,肌醇六磷酸可以在碱性pH值下与高铁血红蛋白结合。