Gupta R K
J Biol Chem. 1976 Nov 10;251(21):6815-22.
31P relaxation studies reveal a 3-fold enhancement of the longitudinal relaxation rate of both phosphoryl groups of hemoglobin-bound 2,3-bisphosphoglycerate upon conversion of methemoglobin to fluoromethemoglobin presumably due to an order of magnitude increase in the electron spin relaxation time. The enhancement of the longitudinal components of 31P relaxation (T(-1)1pr) upon binding to hemoglobin is not exchange-limited, since it is more than an order of magnitude smaller than the effect observed on the transverse components (T(-1)2pr). From the observed paramagnetic component, T(-1)1M, of the bound state relaxation rate of 2,3-bisphosphoglycerate, using the correlation time tau s obtained from the frequency dependence of water proton relaxation, we obtained an NMR root mean sixth distance from the four heme iron atoms to each of the 31P nuclei of 24 +/- 1 A. This is in excellent agreement with the x-ray crystallographic determination of this distance of (25 +/- 1) A in the 2,3-bisphosphoglycerate-deoxyhemoglobin complex, indicating that the spatial disposition of the allosteric site in the deoxy and oxy conformations of hemoglobin relative to the various heme irons may be the same, and that the same protein groups may be involved in binding 2,3-bisphosphoglycerate to the two forms of hemoglobin. Water proton relaxation studies reveal the existence of different conformational states of methemoglobins with 2,3-bisphosphoglycerate and inositol hexaphosphate. Inositol hexaphosphate alters the conformation to a strained (T) state with deoxy-like quaternary and tertiary globin structure as indicated by the finding that equimolar amounts of inositol heasphosphate induce gelation in a 4 mM sickle methemoglobin solution at temperatures greater than or equal 24 degrees. More interestingly, oxyhemoglobin S shows an identical thermodynamically reversible gelation behavior, with the same transition temperature (24 degrees), arguing against a mutual coupling of the protein conformation and the heme spin state in functional ferrohemoglobins. High ionic strengths (approximately 1 M) and pH values above neutrality block inositol hexaphosphate induced gelation of sickle met- and oxyhemoglobins. Unlike inositol hexaphosphate, the presence of saturating amounts of 2,3-bisphosphoglycerate does not promote gelation of a 4 mM met- or oxyhemoglobin S solution.
31P弛豫研究表明,当高铁血红蛋白转化为氟高铁血红蛋白时,与血红蛋白结合的2,3 - 二磷酸甘油酸的两个磷酰基的纵向弛豫率提高了3倍,这可能是由于电子自旋弛豫时间增加了一个数量级。2,3 - 二磷酸甘油酸与血红蛋白结合时,31P纵向弛豫(T(-1)1pr)分量的增强不受交换限制,因为它比横向分量(T(-1)2pr)上观察到的效应小一个数量级以上。根据观察到的2,3 - 二磷酸甘油酸结合态弛豫率的顺磁分量T(-1)1M,利用从水质子弛豫频率依赖性获得的相关时间τs,我们得到了从四个血红素铁原子到2,3 - 二磷酸甘油酸每个31P核的NMR均方根第六距离为24±1 Å。这与2,3 - 二磷酸甘油酸 - 脱氧血红蛋白复合物中该距离的X射线晶体学测定值(25±1)Å非常吻合,表明血红蛋白脱氧和氧合构象中变构位点相对于各个血红素铁的空间布局可能相同,并且相同的蛋白质基团可能参与2,3 - 二磷酸甘油酸与两种形式血红蛋白的结合。水质子弛豫研究揭示了高铁血红蛋白与2,3 - 二磷酸甘油酸和肌醇六磷酸存在不同的构象状态。肌醇六磷酸将构象改变为一种紧张的(T)状态,具有类似脱氧的四级和三级球蛋白结构,这一发现表明等摩尔量的肌醇六磷酸在温度大于或等于24度时会在4 mM镰状高铁血红蛋白溶液中诱导凝胶化。更有趣的是,氧合血红蛋白S表现出相同的热力学可逆凝胶化行为,具有相同的转变温度(24度),这与功能性亚铁血红蛋白中蛋白质构象和血红素自旋状态的相互耦合相矛盾。高离子强度(约1 M)和中性以上的pH值会阻止肌醇六磷酸诱导的镰状高铁血红蛋白和氧合血红蛋白的凝胶化。与肌醇六磷酸不同,饱和量的2,3 - 二磷酸甘油酸的存在不会促进4 mM高铁血红蛋白S或氧合血红蛋白S溶液的凝胶化。