Suppr超能文献

基于脑电图的跨主体情绪识别的模型无关元学习

Model-agnostic meta-learning for EEG-based inter-subject emotion recognition.

作者信息

Chen Cheng, Fang Hao, Yang Yuxiao, Zhou Yi

机构信息

Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, United States of America.

MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou 310058, People's Republic of China.

出版信息

J Neural Eng. 2025 Jan 21;22(1). doi: 10.1088/1741-2552/ad9956.

Abstract

. Developing an efficient and generalizable method for inter-subject emotion recognition from neural signals is an emerging and challenging problem in affective computing. In particular, human subjects usually have heterogeneous neural signal characteristics and variable emotional activities that challenge the existing recognition algorithms from achieving high inter-subject emotion recognition accuracy.. In this work, we propose a model-agnostic meta-learning algorithm to learn an adaptable and generalizable electroencephalogram-based emotion decoder at the subject's population level. Different from many prior end-to-end emotion recognition algorithms, our learning algorithms include a pre-training step and an adaptation step. Specifically, our meta-decoder first learns on diverse known subjects and then further adapts it to unknown subjects with one-shot adaptation. More importantly, our algorithm is compatible with a variety of mainstream machine learning decoders for emotion recognition.. We evaluate the adapted decoders obtained by our proposed algorithm on three Emotion-EEG datasets: SEED, DEAP, and DREAMER. Our comprehensive experimental results show that the adapted meta-emotion decoder achieves state-of-the-art inter-subject emotion recognition accuracy and outperforms the classical supervised learning baseline across different decoder architectures.. Our results hold promise to incorporate the proposed meta-learning emotion recognition algorithm to effectively improve the inter-subject generalizability in designing future affective brain-computer interfaces.

摘要

开发一种高效且可推广的从神经信号中进行个体间情绪识别的方法,是情感计算中一个新兴且具有挑战性的问题。特别是,人类受试者通常具有异质的神经信号特征和可变的情绪活动,这对现有的识别算法实现高个体间情绪识别准确率构成了挑战。在这项工作中,我们提出了一种模型无关的元学习算法,以在受试者群体层面学习一种适应性强且可推广的基于脑电图的情绪解码器。与许多先前的端到端情绪识别算法不同,我们的学习算法包括一个预训练步骤和一个适应步骤。具体而言,我们的元解码器首先在不同的已知受试者上进行学习,然后通过一次性适应将其进一步适配到未知受试者。更重要的是,我们的算法与多种用于情绪识别的主流机器学习解码器兼容。我们在三个情绪脑电图数据集(SEED、DEAP和DREAMER)上评估了通过我们提出的算法获得的适配解码器。我们全面的实验结果表明,适配后的元情绪解码器实现了当前最优的个体间情绪识别准确率,并且在不同的解码器架构上均优于经典的监督学习基线。我们的结果有望纳入所提出的元学习情绪识别算法,以在设计未来的情感脑机接口时有效提高个体间的可推广性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验