Wang Lu, Sun Tongrui, Zhao Xinglei, Li Li, Guo Ziyi, Xiong Chonghao, Yin Yifeng, Hu Yuanyuan, Zou Yidong, Huang Jia
School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China.
State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of Safety and Environmental Technology, Beijing 102206, P. R. China.
ACS Appl Mater Interfaces. 2024 Dec 11;16(49):68103-68111. doi: 10.1021/acsami.4c15971. Epub 2024 Dec 2.
Doping of organic semiconductors (OSCs) has been developed as an effective means of modulating the density and transfer efficiency of charge carriers; however, realization of effective doping to tailor the chemical sensing performance of OSC-based sensors still remains not explored extensively. In addition, the application of OSCs in chemical sensors is usually limited by the poor stability and low selectivity. Herein, flexible donor-acceptor copolymer-based organic field-effect transistor (OFET) chemical sensors are designed via an electrophilic attack doping strategy. The p-dopant trityl tetrakis(pentafluorophenyl) borate (TrTPFB) can be effectively doped into the host molecular -alkyl-diketopyrrolo-pyrroledithienylthieno[3,2-]thiophene (DPPDTT). It is simple to alter the doping efficiency and film thickness (. 5.5-17.7 nm) by adjusting the proportion and concentration of guest-host molecules, which endows facile carrier mobility and enhanced sensing sensitivity modulation toward reducing gases at room temperature. Particularly, 1.0 mol% TrTPFB-doped DPPDTT achieved the highest response to HS gas, including ultralow detection concentration (0.5 ppb), excellent selectivity, high humidity stability, and long-term storage stability. This work can provide a new strategy for the potential applications of the organic electronic sensing devices.
有机半导体(OSCs)的掺杂已发展成为一种调节电荷载流子密度和转移效率的有效手段;然而,实现有效的掺杂以定制基于OSC的传感器的化学传感性能仍未得到广泛探索。此外,OSCs在化学传感器中的应用通常受到稳定性差和选择性低的限制。在此,通过亲电攻击掺杂策略设计了基于柔性供体-受体共聚物的有机场效应晶体管(OFET)化学传感器。p型掺杂剂三苯基四(五氟苯基)硼酸盐(TrTPFB)可以有效地掺杂到主体分子 - 烷基 - 二酮吡咯并吡咯二噻吩并噻吩[3,2 - ]噻吩(DPPDTT)中。通过调节客体 - 主体分子的比例和浓度来改变掺杂效率和膜厚度(5.5 - 17.7 nm)很简单,这赋予了在室温下对还原气体的便捷载流子迁移率和增强的传感灵敏度调制。特别地,1.0 mol%TrTPFB掺杂的DPPDTT对HS气体实现了最高响应,包括超低检测浓度(0.5 ppb)、优异的选择性、高湿度稳定性和长期储存稳定性。这项工作可以为有机电子传感设备的潜在应用提供一种新策略。