Hou Weiping, Gao Yuliang, Huang Shifeng, Tian Penghui, Cao Yanjiao, Han Chenhui, Gu Xiaojun, Wu Limin
School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China.
Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China.
Small. 2025 Jan;21(1):e2404743. doi: 10.1002/smll.202404743. Epub 2024 Dec 2.
Zn metal is the most attractive anode material for aqueous batteries, yet it encounters challenges from dendrites. Here, based on lanthanum trifluoromethanesulfonate (La(OTf))-based electrolyte, the idea of tailoring the electrode interface microenvironment (ion concentration, solid electrolyte interphase (SEI) and electric field) is proposed to stabilize the Zn metal anode. The theoretical and experimental results show that the reconstruction of the electrolyte microstructure by OTf and the capture of SO by La enhance the liquid-phase mass transfer, which alleviates the ion concentration gradient on the anode surface. Meanwhile, the electrolyte decomposes to form a favorable inorganic-rich SEI. Importantly, the adsorbed La homogenizes the electric field intensity at the tip of the anode surface. Benefiting from the improved interface microenvironment, the Zn electrodeposition behavior is efficiently regulated, endowing the self-elimination behavior of the regenerated dendrites. As a proof-of-concept, the Zn metal anode shows a highly reversible plating/stripping cycling in both Zn||Cu (7000 cycles) and Zn||Zn cells (3600 h). Also, the NHVO||Zn pouch cell operates stably for over 500 cycles and exhibits a low-gassing behavior.
锌金属是水系电池中最具吸引力的负极材料,但其面临枝晶带来的挑战。在此,基于三氟甲磺酸镧(La(OTf))基电解质,提出了调控电极界面微环境(离子浓度、固体电解质界面(SEI)和电场)以稳定锌金属负极的想法。理论和实验结果表明,OTf对电解质微观结构的重构以及La对SO的捕获增强了液相传质,减轻了负极表面的离子浓度梯度。同时,电解质分解形成有利的富含无机物的SEI。重要的是,吸附的La使负极表面尖端的电场强度均匀化。受益于改善的界面微环境,锌的电沉积行为得到有效调控,赋予了再生枝晶自消除行为。作为概念验证,锌金属负极在Zn||Cu电池(7000次循环)和Zn||Zn电池(3600小时)中均表现出高度可逆的电镀/剥离循环。此外,NHVO||Zn软包电池稳定运行超过500次循环,并表现出低产气行为。