Li Yang, Zhao Guoxiang, Zuo Shouwei, Wen Linrui, Liu Qiao, Zou Chen, Ren Yuanfu, Kobayashi Yoji, Tao Huabing, Luan Deyan, Huang Kuowei, Cavallo Luigi, Zhang Huabin
Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia.
KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
Adv Mater. 2025 Jan;37(3):e2407386. doi: 10.1002/adma.202407386. Epub 2024 Dec 2.
Iridium (Ir)-based oxide is the state-of-the-art electrocatalyst for acidic water oxidation, yet it is restricted to a few Ir-O octahedral packing modes with limited structural flexibility. Herein, the geometric structure diversification of Ir is achieved by integrating spatially correlated Ir atoms into the surface lattice of TiO and its booting effect on oxygen evolution reaction (OER) is investigated. Notably, the resultant i-Ir/TiO catalyst exhibits much higher electrocatalytic activity, with an overpotential of 240 mV at 10 mA cm and excellent stability of 315 h at 100 mA cm in acidic electrolyte. Both experimental and theoretical findings reveal that flexible Ir─O─Ir coordination with varied geometric structure plays a crucial role in enhancing OER activity, which optimize the intermediate adsorption by adjusting the d-band center of active Ir sites. Operando characterizations demonstrate that the interactive Ir─O─Ir units can suppress over-oxidation of Ir, effectively widening the stable region of Ir species during the catalytic process. The proton exchange membrane (PEM) electrolyzer, equipped with i-Ir/TiO as an anode, gives a low driving voltage of 1.63 V at 2 A cm and maintains stable performance for over 440 h. This work presents a general strategy to eliminate the inherent geometric limitations of IrO species, thereby inspiring further development of advanced catalyst designs.
铱(Ir)基氧化物是用于酸性水氧化的最先进的电催化剂,但其仅限于少数几种具有有限结构灵活性的Ir-O八面体堆积模式。在此,通过将空间相关的Ir原子整合到TiO的表面晶格中来实现Ir的几何结构多样化,并研究其对析氧反应(OER)的促进作用。值得注意的是,所得的i-Ir/TiO催化剂表现出更高的电催化活性,在10 mA cm时过电位为240 mV,在酸性电解质中于100 mA cm下具有315 h的优异稳定性。实验和理论研究结果均表明,具有不同几何结构的灵活的Ir─O─Ir配位在提高OER活性方面起着关键作用,其通过调节活性Ir位点的d带中心来优化中间体吸附。原位表征表明,相互作用的Ir─O─Ir单元可以抑制Ir的过度氧化,有效地拓宽了催化过程中Ir物种的稳定区域。配备i-Ir/TiO作为阳极的质子交换膜(PEM)电解槽在2 A cm时具有1.63 V的低驱动电压,并保持稳定性能超过440 h。这项工作提出了一种消除IrO物种固有几何限制的通用策略,从而推动先进催化剂设计的进一步发展。