Coffin Carleton H, Fisher Luke A, Crippen Sara, Demers Phoebe, Bartlett Douglas H, Royer Catherine A
Graduate Program in Biochemistry and Biophysics, Rensselaer Polytechnic Institute, Troy, NY, United States.
Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States.
Front Microbiol. 2024 Nov 18;15:1470617. doi: 10.3389/fmicb.2024.1470617. eCollection 2024.
The molecular mechanisms underlying pressure adaptation remain largely unexplored, despite their significance for understanding biological adaptation and improving sterilization methods in the food and beverage industry. The heat shock response leads to a global stabilization of the proteome. Prior research suggested that the heat shock regulon may exhibit a transcriptional response to high-pressure stress.
In this study, we investigated the pressure-dependent heat shock response in strains using plasmid-borne green fluorescent protein (GFP) promoter fusions and fluorescence fluctuation microscopy.
We quantitatively confirm that key heat shock genes-, , , and - are transcriptionally upregulated following pressure shock in both piezosensitive and a more piezotolerant laboratory-evolved strain, AN62. Our quantitative imaging results provide the first single cell resolution measurements for both the heat shock and pressure shock transcriptional responses, revealing not only the magnitude of the responses, but also the biological variance involved. Moreover, our results demonstrate distinct responses in the pressure-adapted strain. Specifically, is upregulated more than in AN62, while the reverse is true in the parental strain. Furthermore, unlike in the parental strain, the pressure-induced upregulation of is highly stochastic in strain AN62, consistent with a strong feedback mechanism and suggesting that RpoE could act as a pressure sensor.
Despite its capacity to grow at pressures up to 62 MPa, the AN62 genome shows minimal mutations, with notable single nucleotide substitutions in genes of the transcriptionally important subunit of RNA polymerase and the Rho terminator. In particular, the mutation in RNAP is one of a cluster of mutations known to confer rifampicin resistance to via modification of RNAP pausing and termination efficiency. The observed differences in the pressure and heat shock responses between the parental MG1655 strain and the pressure-adapted strain AN62 could arise in part from functional differences in their RNAP molecules.
尽管压力适应背后的分子机制对于理解生物适应以及改进食品和饮料行业的杀菌方法具有重要意义,但在很大程度上仍未得到充分探索。热休克反应会导致蛋白质组的整体稳定。先前的研究表明,热休克调节子可能对高压胁迫表现出转录反应。
在本研究中,我们使用质粒携带的绿色荧光蛋白(GFP)启动子融合和荧光波动显微镜研究了菌株中压力依赖性热休克反应。
我们定量证实,在压力敏感的亲本菌株和更耐压力的实验室进化菌株AN62中,关键热休克基因—— 、 、 和 —— 在压力冲击后转录上调。我们的定量成像结果首次提供了热休克和压力冲击转录反应的单细胞分辨率测量,不仅揭示了反应的幅度,还揭示了其中涉及的生物学差异。此外,我们的结果表明压力适应菌株存在不同的反应。具体而言,在AN62中 上调幅度大于 ,而在亲本菌株中情况则相反。此外,与亲本菌株不同,在菌株AN62中压力诱导的 上调具有高度随机性,这与强烈的反馈机制一致,并表明RpoE可能充当压力传感器。
尽管AN62能够在高达62 MPa的压力下生长,但其基因组显示出极少的突变,在转录重要的RNA聚合酶 亚基和Rho终止子的基因中存在明显的单核苷酸替换。特别是,RNA聚合酶中的突变是已知通过改变RNA聚合酶的暂停和终止效率赋予 对利福平抗性的一组突变之一。亲本MG1655菌株和压力适应菌株AN62之间观察到的压力和热休克反应差异可能部分源于它们的RNA聚合酶分子的功能差异。