Mitra Souvik, Zens Clara, Kupfer Stephan, Diddens Diddo
Institute of Physical Chemistry, Universität Münster, Münster 48149, Germany.
Institute of Physical Chemistry, Friedrich Schiller University Jena, Jena 07743, Germany.
J Chem Phys. 2024 Dec 7;161(21). doi: 10.1063/5.0221802.
This research elucidates the intricate nature of electronic coupling in the redox-active (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO), commonly utilized in organic radical batteries. This study employs a combination of classical molecular dynamics and various electronic coupling calculation schemes. Within the context of the generalized Mulliken-Hush method, the electronic couplings are investigated via the complete active space self-consistent field approach, in combination with n-electron valence state perturbation theory, to provide an accurate description of both static and dynamic electron correlation as well as using (time-dependent) density functional theory simulations. Furthermore, the electronic communication between redox-active sites is studied using the cost-efficient density functional theory (DFT)-based frontier molecular orbital (FMO) approach. Our study reveals the dependence of the electronic coupling on the distance and the relative orientation of the redox pairs (TEMPO and TEMPO+). Apart from the expected exponential distance dependence, we found pronounced orientation dependence, with coupling values varying up to 0.2 eV, which is reflected by a substantial basis set dependency of the couplings, in particular at short distances. In addition, our study highlights the limitations of the DFT-based FMO method, in particular at short intermolecular distances between the redox-active sites, which may lead to a mixing of the involved molecular orbitals. This comparison will provide us with the most cost-accuracy-effective method for calculating electronic couplings in TEMPO-TEMPO+ systems.
本研究阐明了氧化还原活性的(2,2,6,6-四甲基哌啶-1-基)氧基(TEMPO)中电子耦合的复杂本质,TEMPO常用于有机自由基电池。本研究采用了经典分子动力学和各种电子耦合计算方案的组合。在广义穆利肯-赫什方法的背景下,通过完全活性空间自洽场方法结合n电子价态微扰理论来研究电子耦合,以准确描述静态和动态电子相关性,同时还使用了(含时)密度泛函理论模拟。此外,利用基于密度泛函理论(DFT)的高效前沿分子轨道(FMO)方法研究了氧化还原活性位点之间的电子通信。我们的研究揭示了电子耦合对氧化还原对(TEMPO和TEMPO+)的距离和相对取向的依赖性。除了预期的指数距离依赖性外,我们还发现了明显的取向依赖性,耦合值变化高达0.2 eV,这反映在耦合对基组的强烈依赖性上,特别是在短距离时。此外,我们的研究突出了基于DFT的FMO方法的局限性,特别是在氧化还原活性位点之间的短分子间距离处,这可能导致所涉及分子轨道的混合。这种比较将为我们提供计算TEMPO-TEMPO+系统中电子耦合的最具成本效益的方法。