Suppr超能文献

基于机器学习和遗传算法的可回收塑料设计

Design of Recyclable Plastics with Machine Learning and Genetic Algorithm.

作者信息

Atasi Chureh, Kern Joseph, Ramprasad Rampi

机构信息

School of Materials Science and Engineering, College of Engineering, Georgia Institute of Technology, 771 Ferst Dr. N.W., Atlanta, Georgia 30318, United States.

出版信息

J Chem Inf Model. 2024 Dec 23;64(24):9249-9259. doi: 10.1021/acs.jcim.4c01530. Epub 2024 Dec 3.

Abstract

We present an artificial intelligence-guided approach to design durable and chemically recyclable ring-opening polymerization (ROP) class polymers. This approach employs a genetic algorithm (GA) that designs new monomers and then utilizes virtual forward synthesis (VFS) to generate almost a million ROP polymers. Machine learning models to predict thermal, thermodynamic, and mechanical properties─crucial for application-specific performance and recyclability─are used to guide the GA toward optimal polymers. We present potential substitute polymers for polystyrene (PS) that achieve all property targets with low estimated synthetic complexity.

摘要

我们提出了一种人工智能引导的方法来设计耐用且可化学回收的开环聚合(ROP)类聚合物。这种方法采用遗传算法(GA)来设计新的单体,然后利用虚拟正向合成(VFS)生成近百万种ROP聚合物。机器学习模型用于预测热性能、热力学性能和机械性能(这些性能对于特定应用的性能和可回收性至关重要),以引导遗传算法找到最优聚合物。我们展示了聚苯乙烯(PS)的潜在替代聚合物,这些聚合物以较低的估计合成复杂度实现了所有性能目标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95e9/11683875/62ff24db1da6/ci4c01530_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验