Jan Farkhandah, M Parthiban, Kaur Satinder, Khan Mohd Anwar, Sheikh Farooq Ahmad, Wani Fehim Jeelani, Saad A A, Singh Yogita, Kumar Upendra, Gupta Vikas, Thudi Mahendar, Saini Dinesh K, Kumar Sundeep, Varshney Rajeev Kumar, Mir Reyazul Rouf
Division of Genetics & Plant Breeding, Faculty of Agriculture (FoA), SKUAST-Kashmir, Wadura Campus, Sopore, 193201, J&K, India.
Division of Entomology, Faculty of Agriculture (FoA), SKUAST-Kashmir, Wadura Campus, Sopore, 193201, J&K, India.
Plant Physiol Biochem. 2025 Feb;219:109259. doi: 10.1016/j.plaphy.2024.109259. Epub 2024 Nov 9.
Wheat stripe rust (Puccinia striiformis f. sp. tritici, Pst) is the most damaging wheat disease, causing substantial losses in global wheat production and productivity. Our study aimed to unravel the complex reciprocity between reactive oxygen species and the antioxidant defense system as a source of resistance against stripe rust in diploid, tetraploid and hexaploid wheat genotypes. The significant genetic variability for stripe rust in the materials under study was evident as the genotypes showed contrasting responses during both the adult and seedling stages. Our thorough perspective on the biochemical responses of wheat genotypes to stripe rust infection revealed distinct patterns in oxidative damage, antioxidant enzymes and photosynthetic pigments. Principal component analysis revealed inverse correlations between antioxidants and ROS, underscoring their key function in maintaining the cellular redox balance and protecting plants against oxidative damage. Diploid (Ae. tauschii) wild wheat exhibited a better biochemical defense system and greater resistance to stripe rust than the tetraploid (T. durum) and hexaploid (Triticum aestivum) wheat genotypes. The antioxidant enzyme activity of durum wheat was moderate compared to diploid and hexaploid wheat genotypes. The hexaploid wheat genotypes exhibited increased ROS production, reduced antioxidant enzyme activity and decreased photosynthetic pigment levels. This study enhances understanding of the antioxidant defense system across different wheat ploidies facing stripe rust, serving as a valuable strategy for improving crop disease resistance. This study validated the biochemical response of stripe rust-resistant and susceptible candidate genotypes, which will be used to develop genetic resources for discovering stripe rust resistance genes in wheat.
小麦条锈病(条形柄锈菌小麦专化型,Pst)是最具破坏性的小麦病害,在全球小麦生产和生产力方面造成重大损失。我们的研究旨在揭示活性氧与抗氧化防御系统之间复杂的相互作用,这是二倍体、四倍体和六倍体小麦基因型对条锈病产生抗性的一个来源。在所研究的材料中,条锈病存在显著的遗传变异性,因为这些基因型在成株期和苗期均表现出不同的反应。我们对小麦基因型对条锈病感染的生化反应进行的全面观察揭示了氧化损伤、抗氧化酶和光合色素方面的不同模式。主成分分析揭示了抗氧化剂与活性氧之间的负相关关系,突出了它们在维持细胞氧化还原平衡和保护植物免受氧化损伤方面的关键作用。与四倍体(硬粒小麦)和六倍体(普通小麦)小麦基因型相比,二倍体(节节麦)野生小麦表现出更好的生化防御系统和对条锈病更强的抗性。与二倍体和六倍体小麦基因型相比,硬粒小麦的抗氧化酶活性适中。六倍体小麦基因型表现出活性氧产生增加、抗氧化酶活性降低和光合色素水平下降。本研究增进了对不同倍性小麦面对条锈病时抗氧化防御系统的理解,是提高作物抗病性的一项有价值的策略。本研究验证了条锈病抗性和感病候选基因型的生化反应,这些反应将用于开发遗传资源,以发现小麦中的条锈病抗性基因。