Ding Jianyang, Jiang Zhicheng, Chen Xiuhua, Tao Zicheng, Liu Zhengtai, Li Tongrui, Liu Jishan, Sun Jianping, Cheng Jinguang, Liu Jiayu, Yang Yichen, Zhang Runfeng, Deng Liwei, Jing Wenchuan, Huang Yu, Shi Yuming, Ye Mao, Qiao Shan, Wang Yilin, Guo Yanfeng, Feng Donglai, Shen Dawei
<a href="https://ror.org/03rx2tr07">National Synchrotron Radiation Laboratory</a>, <a href="https://ror.org/04c4dkn09">University of Science and Technology of China</a>, Hefei 230026, China.
<a href="https://ror.org/02ys41z83">Shanghai Synchrotron Radiation Facility</a>, Shanghai Advanced Research Institute, <a href="https://ror.org/034t30j35">Chinese Academy of Sciences</a>, Shanghai 201210, China.
Phys Rev Lett. 2024 Nov 15;133(20):206401. doi: 10.1103/PhysRevLett.133.206401.
Altermagnetism (AM), a newly discovered magnetic state, ingeniously integrates the properties of ferromagnetism and antiferromagnetism, representing a significant breakthrough in the field of magnetic materials. Despite experimental verification of some typical AM materials, such as MnTe and MnTe_{2}, the pursuit of AM materials that feature larger spin splitting and higher transition temperature is still essential. Here, our research focuses on CrSb, which possesses Néel temperature of up to 700 K and giant spin splitting near the Fermi level (E_{F}). Utilizing high-resolution angle-resolved photoemission spectroscopy and density functional theory calculations, we meticulously map the three-dimensional electronic structure of CrSb. Our photoemission spectroscopic results on both (0001) and (101[over ¯]0) cleavages of CrSb collaboratively reveal unprecedented details on AM-induced band splitting, and subsequently pin down its unique bulk g-wave symmetry through quantitative analysis of the angular and photon-energy dependence of spin splitting. Moreover, the observed spin splitting reaches the magnitude of 0.93 eV near E_{F}, the most substantial among all confirmed AM materials. This Letter not only validates the nature of CrSb as a prototype g-wave-like AM material but also underscores its pivotal role in pioneering applications in spintronics.
变磁性(AM)是一种新发现的磁态,巧妙地融合了铁磁性和反铁磁性的特性,代表了磁性材料领域的一项重大突破。尽管已经通过实验验证了一些典型的AM材料,如MnTe和MnTe₂,但追求具有更大自旋分裂和更高转变温度的AM材料仍然至关重要。在此,我们的研究聚焦于CrSb,它具有高达700 K的奈尔温度以及费米能级(Eₚ)附近的巨大自旋分裂。利用高分辨率角分辨光电子能谱和密度泛函理论计算方法,我们精心绘制了CrSb的三维电子结构。我们对CrSb的(0001)和(101̅0)解理面进行的光电子能谱研究结果共同揭示了AM诱导的能带分裂方面前所未有的细节,并随后通过对自旋分裂的角度和光子能量依赖性进行定量分析,确定了其独特的体g波对称性。此外,在费米能级附近观察到的自旋分裂幅度达到0.93 eV,这在所有已确认的AM材料中是最大的。本论文不仅验证了CrSb作为类g波AM材料原型的性质,还强调了其在自旋电子学开创性应用中的关键作用。