Zhou Zhiyuan, Cheng Xingkai, Hu Mengli, Chu Ruiyue, Bai Hua, Han Lei, Liu Junwei, Pan Feng, Song Cheng
Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, China.
Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China.
Nature. 2025 Feb;638(8051):645-650. doi: 10.1038/s41586-024-08436-3. Epub 2025 Feb 12.
Crystal symmetry guides the development of condensed matter. The unique crystal symmetry connecting magnetic sublattices not only distinguishes altermagnetism from ferromagnetism and conventional antiferromagnetism but also enables it to combine the advantages of ferromagnetism and antiferromagnetism. Altermagnetic order is essentially a magnetic crystal order, determined by the magnetic-order (Néel) vector and crystal symmetry. Previous experimental studies have concentrated on manipulating the altermagnetic symmetry by tuning the Néel vector orientations. However, manipulation of the crystal symmetry, which holds great promise for manipulating the altermagnetic order, remains challenging. Here we realize the manipulation of altermagnetic order in chromium antimonide (CrSb) films via crystal symmetry. The locking between the Dzyaloshinskii-Moriya vector and the magnetic space symmetry helps to reconstruct the altermagnetic order, from a collinear Néel vector to a canted one. It generates a room-temperature spontaneous anomalous Hall effect in an altermagnet. The relative direction between the current-induced spin polarization and the Dzyaloshinskii-Moriya vector determines the switching modes of altermagnetic order, that is, parallel for the field-assisted mode in CrSb /Pt and non-parallel for the field-free mode in W/CrSb . The Dzyaloshinskii-Moriya vector induces an asymmetric energy barrier in the field-assisted mode and generates an asymmetric driving force in the field-free mode. In particular, the latter is guaranteed by the emerging Dzyaloshinskii-Moriya torque in altermagnets. Reconstructing crystal symmetry adds a new twist to the manipulation of altermagnetic order. It not only underpins the magnetic-memory and nano-oscillator technology but also inspires crossover studies between altermagnetism and other research topics.
晶体对称性引导着凝聚态物质的发展。连接磁亚晶格的独特晶体对称性不仅将交替磁性与铁磁性和传统反铁磁性区分开来,还使其能够兼具铁磁性和反铁磁性的优点。交替磁序本质上是一种磁晶体序,由磁序(奈尔)矢量和晶体对称性决定。先前的实验研究主要集中在通过调整奈尔矢量方向来操纵交替磁对称性。然而,操纵对控制交替磁序很有前景的晶体对称性仍然具有挑战性。在这里,我们通过晶体对称性实现了对锑化铬(CrSb)薄膜中交替磁序的操纵。Dzyaloshinskii-Moriya矢量与磁空间对称性之间的锁定有助于重构交替磁序,从共线奈尔矢量变为倾斜奈尔矢量。这在交替磁体中产生了室温自发反常霍尔效应。电流诱导的自旋极化与Dzyaloshinskii-Moriya矢量之间的相对方向决定了交替磁序的切换模式,即在CrSb /Pt中的场辅助模式下为平行,而在W/CrSb中的无场模式下为不平行。Dzyaloshinskii-Moriya矢量在场辅助模式下诱导出不对称能垒,并在无场模式下产生不对称驱动力。特别是,后者由交替磁体中出现的Dzyaloshinskii-Moriya转矩保证。重构晶体对称性为交替磁序的操纵增添了新的维度。它不仅为磁存储和纳米振荡器技术提供了支撑,还激发了交替磁性与其他研究主题之间的交叉研究。