Liu Yichen, Yu Junxi, Liu Cheng-Cheng
Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, <a href="https://ror.org/01skt4w74">Beijing Institute of Technology</a>, Beijing 100081, China.
Phys Rev Lett. 2024 Nov 15;133(20):206702. doi: 10.1103/PhysRevLett.133.206702.
We introduce a universal methodology for generating and manipulating altermagnetism in two-dimensional (2D) magnetic Van der Waals (MvdW) materials through twisting. We find that a key in-plane twofold rotational operation can be achieved in a twisted bilayer of any 2D MvdW material, which takes one of all five 2D Bravais lattices, thereby inducing altermagnetism. By choosing the constituent MvdW monolayer with specific symmetry, our approach can tailor altermagnetism of any type, such as d wave, g wave, and i wave. Furthermore, the properties of our twisted altermagnetic materials can be easily engineered. Taking a transition-metal oxyhalide VOBr as an example, we find that by tuning the twist angle and Fermi level, a giant spin Hall angle can be obtained, much larger than the experimentally reported. This approach establishes a general, robust, and adjustable platform to explore altermagnetism and provides a new efficient way to generate and manipulate the spin current.
我们介绍了一种通过扭转在二维(2D)磁性范德华(MvdW)材料中产生和操控交变磁性的通用方法。我们发现,在任何二维MvdW材料的扭曲双层中都可以实现一个关键的面内二重旋转操作,该材料具有五种二维布拉维晶格中的一种,从而诱导出交变磁性。通过选择具有特定对称性的组成MvdW单层,我们的方法可以定制任何类型的交变磁性,如d波、g波和i波。此外,我们的扭曲交变磁性材料的特性可以很容易地进行调控。以过渡金属卤氧化物VOBr为例,我们发现通过调节扭转角和费米能级,可以获得比实验报道大得多的巨自旋霍尔角。这种方法建立了一个通用、稳健且可调节的平台来探索交变磁性,并提供了一种产生和操控自旋电流的新有效方法。