Suppr超能文献

预测垂体腺瘤经蝶窦内镜手术后尿崩症的列线图。

Nomogram for predicting diabetes insipidus following endoscopic transsphenoidal surgery in pituitary adenomas.

作者信息

Yu Xinming, Xu Guangming, Qiu Peng

机构信息

Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.

Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.

出版信息

J Neuroendocrinol. 2025 Jan;37(1):e13475. doi: 10.1111/jne.13475. Epub 2024 Dec 3.

Abstract

Postoperative diabetes insipidus (DI) frequently complicates endoscopic transsphenoidal surgery (TSS) in pituitary adenoma (PA) patients, yet reliable predictive methods for DI risk remain lacking. This study aims to identify risk factors associated with DI following endoscopic transsphenoidal resection of PA and to develop a predictive nomogram for assessing postoperative DI risk. This study involved 600 PA patients underwent endoscopic TSS at Shandong Provincial Hospital from 2021 to 2023. Among these patients, 82 developed postoperative DI while 518 did not. The cohort was randomly divided into training (n = 360) and validation (n = 240) groups at 6:4 ratios by R software. Clinical parameters and radiographic features were evaluated using univariable and multivariable logistic regression to construct a predictive nomogram for post-endoscopic TSS DI risk. Model performance was assessed using ROC curves, calibration plots, and decision curve analysis. Subgroup analysis was used to evaluate the model's ability to discriminate between transient and permanent DI. Univariable and multivariable logistic regression analyses on the training group identified several independent risk factors for post-endoscopic TSS DI, including maximum tumor diameter, Knosp grade, Esposito grade, recurrent PA, and pituitary stalk deviation angle. A nomogram was developed based on these factors, demonstrating robust predictive accuracy with ROC areas under curve of 0.840 for the training group and 0.815 for the validation group. Calibration plots indicated excellent agreement between predicted and observed probabilities of postoperative DI. DCA curves highlighted the nomogram's efficacy in guiding clinical decision-making. Subgroup analysis showed that the model was able to discriminate between transient and permanent DI, and the AUC was 0.652 (95% CI 0.525-0.794). This study presents a nomogram designed to predict postoperative DI risk in patients undergoing endoscopic TSS for PA. Internal and external validations underscored the model's high accuracy, calibration, and clinical utility. Simultaneously, the model can also assess the development risk of permanent DI. This predictive tool offers clinicians valuable support in identifying high-risk DI patients, optimizing postoperative care strategies, and tailoring treatment plans to improve patient outcomes.

摘要

术后尿崩症(DI)常使垂体腺瘤(PA)患者的内镜经蝶窦手术(TSS)变得复杂,但仍缺乏可靠的DI风险预测方法。本研究旨在确定PA内镜经蝶窦切除术后与DI相关的危险因素,并开发一种预测列线图以评估术后DI风险。本研究纳入了2021年至2023年在山东省立医院接受内镜TSS的600例PA患者。在这些患者中,82例发生了术后DI,而518例未发生。通过R软件以6:4的比例将该队列随机分为训练组(n = 360)和验证组(n = 240)。使用单变量和多变量逻辑回归评估临床参数和影像学特征,以构建内镜TSS术后DI风险的预测列线图。使用ROC曲线、校准图和决策曲线分析评估模型性能。亚组分析用于评估模型区分短暂性和永久性DI的能力。训练组的单变量和多变量逻辑回归分析确定了内镜TSS术后DI的几个独立危险因素,包括肿瘤最大直径、Knosp分级、Esposito分级、复发性PA和垂体柄偏斜角度。基于这些因素开发了一个列线图,训练组曲线下面积为0.840,验证组为0.815,显示出强大的预测准确性。校准图表明术后DI的预测概率与观察概率之间具有良好的一致性。DCA曲线突出了列线图在指导临床决策方面的有效性。亚组分析表明该模型能够区分短暂性和永久性DI,AUC为0.652(95%CI 0.525 - 0.794)。本研究提出了一种列线图,旨在预测接受PA内镜TSS患者的术后DI风险。内部和外部验证强调了该模型的高准确性、校准性和临床实用性。同时,该模型还可以评估永久性DI的发生风险。这种预测工具为临床医生识别高风险DI患者、优化术后护理策略以及制定个性化治疗方案以改善患者预后提供了有价值的支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验