Suppr超能文献

基于明场成像的分析中归一化类器官生长率(NOGR)指标的开发与验证

Development and validation of the Normalized Organoid Growth Rate (NOGR) metric in brightfield imaging-based assays.

作者信息

Deben Christophe, Cardenas De La Hoz Edgar, Rodrigues Fortes Felicia, Le Compte Maxim, Seghers Sofie, Vanlanduit Steve, Vercammen Hendrik, Van Den Bogert Bert, Dusetti Nelson, Lin Abraham, Roeyen Geert, Peeters Marc, Prenen Hans, Lardon Filip, Smits Evelien

机构信息

Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium.

Industrial Vision Lab, University of Antwerp, Wilrijk, Belgium.

出版信息

Commun Biol. 2024 Dec 3;7(1):1612. doi: 10.1038/s42003-024-07329-5.

Abstract

This study focuses on refining growth-rate-based drug response metrics for patient-derived tumor organoid screening using brightfield live-cell imaging. Traditional metrics like Normalized Growth Rate Inhibition (GR) and Normalized Drug Response (NDR) have been used to assess organoid responses to anticancer treatments but face limitations in accurately quantifying cytostatic and cytotoxic effects across varying growth rates. Here, we introduce the Normalized Organoid Growth Rate (NOGR) metric, specifically developed for brightfield imaging-based assays. A label-free image analysis model was applied to segment organoids precisely, track their growth rates over time, and classify viable and dead organoids. Testing eleven phenotypically distinct pancreatic cancer organoid models with five chemotherapeutics demonstrates that the NOGR metric more effectively captures cytostatic and cytotoxic drug effects compared to existing methods. This approach enhances the biological relevance of drug sensitivity assessments on organoids and offers a valuable tool for advancing personalized cancer treatment strategies.

摘要

本研究聚焦于利用明场活细胞成像技术,优化基于生长速率的药物反应指标,用于患者来源的肿瘤类器官筛选。传统指标如归一化生长速率抑制(GR)和归一化药物反应(NDR)已被用于评估类器官对抗癌治疗的反应,但在准确量化不同生长速率下的细胞生长抑制和细胞毒性作用方面存在局限性。在此,我们引入了归一化类器官生长速率(NOGR)指标,该指标是专门为基于明场成像的检测方法开发的。一个无标记图像分析模型被应用于精确分割类器官,跟踪其随时间的生长速率,并对存活和死亡的类器官进行分类。用五种化疗药物对十一种表型不同的胰腺癌类器官模型进行测试表明,与现有方法相比,NOGR指标能更有效地捕捉细胞生长抑制和细胞毒性药物效应。这种方法增强了类器官药物敏感性评估的生物学相关性,并为推进个性化癌症治疗策略提供了一个有价值的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bed/11615385/f94d12b5637f/42003_2024_7329_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验